On Poncelet’s porism

Waldemar Cieślak, Elżbieta Szczygielska

Abstract


We consider circular annuli with Poncelet’s porism property. We prove two identities which imply Chapple’s, Steiner’s and other formulas. All porisms can be expressed in the form in which elliptic functions are not used.

Keywords


Porism; annulus; bicentric polygon

Full Text:

PDF

References


Bos, H. J . M., Kers, C., Dort, F. and Raven, D. W., Poncelet’s closure theorem, Expo. Math. 5 (1987) 289-364.

Cieślak, W., Szczygielska, E., Circuminscribed polygons in a plane annulus, Ann. Univ. Mariae Curie-Skłodowska Sect. A 62 (2008), 49-53.

Kerawala, S. M., Poncelet porism in two circles, Bull. Calcutta Math. Soc. 39 (1947), 85-105.

Weisstein, E. W., Poncelet’s Porism, From Math World - A Wolfram Web Resource. http://mathworld.wolfram.com/PonceletsPorism.html




DOI: http://dx.doi.org/10.2478/v10062-010-0011-0
Date of publication: 2016-07-29 10:39:54
Date of submission: 2016-07-28 21:58:59


Statistics


Total abstract view - 637
Downloads (from 2020-06-17) - PDF - 313

Indicators



Refbacks

  • There are currently no refbacks.


Copyright (c) 2010 Waldemar Cieślak, Elżbieta Szczygielska