Some framed \(f\)-structures on transversally Finsler foliations
Abstract
structures of corank 2 exist on the normal bundle of the lifted Finsler foliation.
Keywords
Full Text:
PDFReferences
Abate, M., Patrizio, G., Finsler Metrics - A Global Approach, Lecture Notes in Math., 1591, Springer-Verlag, Berlin, 1994.
Anastasiei, M., A framed f-structure on tangent bundle of a Finsler space, An. Univ. Bucuresti, Mat.-Inf., 49 (2000), 3-9.
Bao, D., Chern, S. S. and Shen, Z., An Introduction to Riemannian Finsler Geometry, Graduate Texts in Math., 200, Springer-Verlag, New York, 2000.
Bejancu, A., Farran, H. R., On the vertical bundle of a pseudo-Finsler manifold, Int. J. Math. Math. Sci. 22 (3) (1997), 637-642.
Gırtu, M., An almost paracontact structure on the indicatrix bundle of a Finsler space, Balkan J. Geom. Appl. 7(2) (2002), 43-48.
Gırtu, M., A framed (f(3,-1))-structure on the tangent bundle of a Lagrange space, Demonstratio Math. 37(4) (2004), 955-961.
Hasegawa, I., Yamaguchi, K. and Shimada, H., Sasakian structures on Finsler manifolds, Antonelli, P. L., Miron R. (eds.), Lagrange and Finsler Geometry, Kluwer Acad. Publ., Dordrecht, 1996, 75-80.
Miernowski, A., A note on transversally Finsler foliations, Ann. Univ. Mariae Curie-Skłodowska Sect. A 60 (2006), 57-64.
Miernowski, A., Mozgawa, W., Lift of the Finsler foliations to its normal bundle, Differential Geom. Appl. 24 (2006), 209-214.
Mihai, I., Rosca, R. and Verstraelen, L., Some aspects of the differential geometry of vector fields, PADGE, Katholieke Univ. Leuven, vol. 2 (1996).
Miron, R., Anastasiei, M., The Geometry of Lagrange Spaces: Theory and Applications, Kluwer Acad. Publ., Dordrecht, 1994.
Popescu, P., Popescu, M., Lagrangians adapted to submersions and foliations, Differential Geom. Appl. 27 (2009), 171-178.
Singh, K. D., Singh, R., Some (f(3,varepsilon))-structure manifold, Demonstratio Math. 10 (3-4) (1977), 637-645.
Vaisman, I., Lagrange geometry on tangent manifolds, Int. J. Math. Math. Sci. 51 (2003), 3241-3266.
Yano, K., On a structure defined by a tensor field of type (1, 1) satisfying (f^3 +f = 0), Tensor (N.S.) 14 (1963), 99-109.
DOI: http://dx.doi.org/10.2478/v10062-011-0007-4
Date of publication: 2016-07-25 18:17:32
Date of submission: 2016-07-25 17:56:01
Statistics
Indicators
Refbacks
- There are currently no refbacks.
Copyright (c) 2011 Cristian Ida