Inequalities concerning polar derivative of polynomials
Abstract
[Editor's note: There are flaws in the paper, see M. A. Qazi, Remarks on some recent results about polynomials with restricted zeros, Ann. Univ. Mariae Curie-Skłodowska Sect. A 67 (2), (2013), 59-64 ]
Keywords
Full Text:
PDFReferences
Bernstein, S., Lecons sur les proprietes extremales et la meilleure approximation desfonctions analytiques d’une variable reele, Gauthier Villars, Paris, 1926 (French).
Chan, T. N., Malik, M. A., On Erdos-Lax theorem, Proc. Indian Acad. Sci. 92 (3) (1983), 191-193.
Dewan, K. K., Hans, S., On maximum modulus for the derivative of a polynomial, Ann. Univ. Mariae Curie-Skłodowska Sect. A 63 (2009), 55-62.
Dewan, K. K., Mir, A., Note on a theorem of S. Bernstein, Southeast Asian Bulletin of Math. 31 (2007), 691-695.
Govil, N. K., On the theorem of S. Bernstein, J. Math. Phys. Sci. 14 (1980), 183-187.
Govil, N. K., Rahman, Q. I., Functions of exponential type not vanishing in a half plane and related polynomials, Trans. Amer. Math. Soc. 137 (1969), 501-517.
Jain, V. K., On polynomials having zeros in closed exterior or interior of a circle, Indian J. Pure Appl. Math. 30 (1999), 153-159.
Malik, M. A., On the derivative of a polynomial, J. London Math. Soc. 1 (1969), 57-60.
Mir, A., On extremal properties and location of zeros of polynomials, Ph.D. Thesis submitted to Jamia Millia Islamia, New Delhi, 2002.
Qazi, M. A., On the maximum modulus of polynomials, Proc. Amer. Math. Soc. 115 (1992), 337-343.
DOI: http://dx.doi.org/10.2478/v10062-011-0001-x
Date of publication: 2016-07-25 18:17:30
Date of submission: 2016-07-25 14:20:08
Statistics
Indicators
Refbacks
- There are currently no refbacks.
Copyright (c) 2011 Arty Ahuja, K. K. Dewan, Sunil Hans