Proximinality and co-proximinality in metric linear spaces
Abstract
Keywords
Full Text:
PDFReferences
Cheney, E. W., Introduction to Approximation Theory, McGraw Hill, New York, 1966.
Franchetti, C., Furi, M., Some characteristic properties of real Hilbert spaces, Rev. Roumaine Math. Pures Appl. 17 (1972), 1045–1048.
Mazaheri, H., Maalek Ghaini, F. M., Quasi-orthogonality of the best approximant sets, Nonlinear Anal. 65 (2006), 534–537.
Mazaheri, H., Modaress, S. M. S., Some results concerning proximinality and coproximinality, Nonlinear Anal. 62 (2005), 1123–1126.
Muthukumar, S., A note on best and best simultaneous approximation, Indian J. Pure Appl. Math. 11 (1980), 715–719.
Narang, T. D., Best approximation in metric spaces, Publ. Sec. Mat. Univ. Autonoma Barcelona 27 (1983), 71–80.
DOI: http://dx.doi.org/10.17951/a.2015.69.1.83
Date of publication: 2015-11-30 09:21:12
Date of submission: 2015-09-03 12:39:27
Statistics
Indicators
Refbacks
- There are currently no refbacks.
Copyright (c) 2015 T. W. Narang, Sahil Gupta