Counting holomorphic connections with a prescribed Ricci tensor
Abstract
Keywords
Full Text:
PDFReferences
DeTurck, D., Existence of metrics with prescribed Ricci curvature: local theory, Invent. Math. 65 (1981), 179–207.
DeTurck, D., Norito, K., Uniqueness and non-existence of metrics with prescribed Ricci curvature, Ann. Inst. H. Poincare Anal. Non Lineaire 5 (1984), 351–359.
Dusek, Z., Kowalski, O., How many are Ricci flat affine connections with arbitrary torsion, Publ. Math. Debrecen 88 (2016), 511–516.
Gantumur, T., The Cauchy–Kovalevskaya Theorem, Math 580, Lecture Notes 2, 2011.
Gasqui, J., Connexions a courbure de Ricci donnee, Math. Z. 168 (1979), 167–179.
Gasqui, J., Sur la courbure de Ricci d’une connexion lineaire, C. R. Acad. Sci. Paris Ser A-B 281 (1975), 389–391.
Kobayashi, S., Nomizu, K., Foundations of Differential Geometry. Volume II, Interscience Publishers, New York, 1969.
Kurek, J., Mikulski, W. M., Plaszczyk, M., How many are projectable classical linear connections with a prescribed Ricci tensor, Filomat 35 (10) (2022), 3279–3285.
Opozda, B., Mikulski, W. M., The Cauchy–Kowalevski theorem applied for counting connections with a prescribed Ricci tensor, Turkish J. Math. 42 (2018), 528–536.
DOI: http://dx.doi.org/10.17951/a.2023.77.1.25-34
Date of publication: 2023-09-30 21:35:45
Date of submission: 2023-09-26 21:22:15
Statistics
Indicators
Refbacks
- There are currently no refbacks.
Copyright (c) 2023 Jan Kurek, Włodzimierz Mikulski, Mariusz Plaszczyk