A new hybrid generalization of Fibonacci and Fibonacci-Narayana polynomials

Dorota Bród, Anetta Szynal-Liana

Abstract


The hybrid numbers are generalization of complex, hyperbolic and dual numbers. The hybrinomials are polynomials which generalize hybrid numbers. In this paper, we introduce and study the distance Fibonacci hybrinomials, i.e. hybrinomials with coefficients being distance Fibonacci polynomials.

Keywords


Fibonacci numbers; recurrence relations; hybrid numbers; hybrinomials

Full Text:

PDF

References


Ait-Amrane, N. R., Belbachir, H., Tan, E., On generalized Fibonacci and Lucas hybrid polynomials, Turkish J. Math. 46 (2022), 2069–2077.

Bednarz, U., Włoch, I., Wołowiec-Musiał, M., Total graph interpretation of the numbers of the Fibonacci type, J. Appl. Math. (2015), Article ID 837917, 7 pp.

Bednarz, U., Wołowiec-Musiał, M., Distance Fibonacci Polynomials, Symmetry 12 (9) (2020), 1540, 14 pp.

Bednarz, U., Wołowiec-Musiał, M., Distance Fibonacci Polynomials - part II, Symmetry 13 (9) (2021), 1723, 10 pp.

Bicknell, M., A primer for the Fibonacci numbers VII, Fibonacci Quart. 8 (4) (1970), 407–420.

Bicknell, M., Hoggatt, V. E. Jr., Roots of Fibonacci polynomials, Fibonacci Quart. 11 (5) (1973), 271–274.

Catarino, P., The h(x)-Fibonacci Quaternion Polynomials: Some Combinatorial Properties, Adv. Appl. Clifford Algebr. 26 (1) (2016), 71–79.

Chen, W. Y. C., Wang, L. X. W., Yang, A. L. B., Schur positivity and the q-logconvexity of the Narayana polynomials, J. Algebraic Combin. 32 (3) (2010), 303–338.

Horzum, T., Kocer, E. G., On some properties of Horadam polynomials, Int. Math. Forum 4 (25–28) (2009), 1243–1252.

Koshy, T., Fibonacci and Lucas Numbers with Applications, John Wiley & Sons, New York–Toronto, 2001.

Kwaśnik, M., Włoch, I., The total number of generalized stable sets and kernels of graphs, Ars Combin. 55 (2000), 139–146.

Mansour, T., Sun, Y., Identities involving Narayana polynomials and Catalan numbers, Discrete Math. 309 (12) (2009), 4079–4088.

Ozdemir, M., Introduction to Hybrid Numbers, Adv. Appl. Clifford Algebr. 28 (1) (2018), Paper No. 11, 32 pp.

Ozkan, E., Altun, ˙I., Generalized Lucas polynomials and relationships between the Fibonacci polynomials and Lucas polynomials, Comm. Algebra 47 (10) (2019), 4020–4030.

Ozkan, E., Kuloglu, B., On the new Narayana polynomials, the Gauss Narayana numbers and their polynomials, Asian-Eur. J. Math. 14 (6) (2021), Paper No. 2150100, 16 pp.

Ozkan, E., Kuloglu, B., Peters, J. F., k-Narayana sequence self-similarity. Flip graph views of k-Narayana self-similarity, Chaos Solitons Fractals 153 (2) (2021), Paper No. 111473, 11 pp.

Petroudi, S. H. J., Pirouz, M., Ozkoc Ozturk, A., The Narayana polynomial and Narayana hybrinomial sequences, Konuralp J. Math. 9 (1) (2021), 90–99.

Sulanke, R. A., Counting Lattice Paths by Narayana Polynomials, Electron. J. Combin. 7 (2000), Research Paper 40, 9 pp.

Szynal-Liana, A., The Horadam hybrid numbers, Discuss. Math. Gen. Algebra Appl. 38 (1) (2018), 91–98.

Szynal-Liana, A., Włoch, I., The Fibonacci hybrid numbers, Util. Math. 110 (2019), 3–10.

Szynal-Liana, A., Włoch, I., Introduction to Fibonacci and Lucas hybrinomials, Complex Var. Elliptic Equ. 65 (10) (2020), 1736–1747.

Szynal-Liana, A., Włoch, I., On special spacelike hybrid numbers, Mathematics 8 (10) (2020), 1671, 10 pp.

Webb, W. A., Parberry, E. A., Divisibility properties of Fibonacci polynomials, Fibonacci Quart. 7 (5) (1969), 457–463.

Yuan, Y., Zhang, W., Some identities involving the Fibonacci polynomials, Fibonacci Quart. 40 (4) (2002), 314–318.




DOI: http://dx.doi.org/10.17951/a.2023.77.1.1-12
Date of publication: 2023-09-30 21:35:45
Date of submission: 2023-09-26 19:31:55


Statistics


Total abstract view - 620
Downloads (from 2020-06-17) - PDF - 425

Indicators



Refbacks

  • There are currently no refbacks.


Copyright (c) 2023 Dorota Bród, Anetta Szynal-Liana