Maclaurin-type inequalities for Riemann-Liouville fractional integrals
Abstract
Keywords
Full Text:
PDFReferences
Budak, H., Hezenci, F., Kara, H., On parametrized inequalities of Ostrowski and Simpson type for convex functions via generalized fractional integral, Math. Methods Appl. Sci. 44 (30) (2021), 12522–12536.
Budak, H., Hezenci, F., Kara, H., On generalized Ostrowski, Simpson and Trapezoidal type inequalities for coordinated convex functions via generalized fractional integrals, Adv. Difference Equ. 2021 (2021), 1–32.
Davis, P. J., Rabinowitz, P., Methods of Numerical Integration, Academic Press, New York–San Francisco–London, 1975.
Dedić Lj.; Matić M., Pecarić, J., Euler-Maclaurin formulae, Math. Inequal. Appl. 6 (2) (2003), 247–275.
Dedić, Lj., Matić, M., Pecarić, J., Vukelic, A., On Euler-Simpson 3/8 formulae, Nonlinear Stud. 18 (1) (2011), 1–26.
Dragomir, S. S., On Simpson’s quadrature formula for mappings of bounded variation and applications, Tamkang J. Math. 30 (1999), 53–58.
Dragomir, S. S., On the midpoint quadrature formula for mappings with bounded variation and applications, Kragujevac J. Math. 22 (2000), 13–19.
Erden, S., Iftikhar, S., Kumam, P., Awan, M. U., Some Newton’s like inequalities with applications, Rev. R. Acad. Cienc. Exactas Fis. Nat. Ser. A. Mat. 114 (4) (2020), 1–13.
Franjic, I., Pecarić, J., Perić, I., Vukelić, A., Euler integral identity, quadrature formulae and error estimations, Element, Zagreb, 2011.
Gao, S., Shi, W., On new inequalities of Newton’s type for functions whose second derivatives absolute values are convex, Int. J. Pure Appl. Math. 74 (1) (2012), 33–41.
Gorenflo, R., Mainardi, F., Fractional Calculus: Integral and Differential Equations of Fractional Order, Springer-Verlag, Wien, 1997.
Hezenci, F., Budak, H., Kara, H., New version of fractional Simpson type inequalities for twice differentiable functions, Adv. Difference Equ. 2021 (2021), Paper No. 460, 10 pp.
Hezenci, F., Budak, H., Kosem, P., On New version of Newton’s inequalities for Riemann-Liouville fractional integrals, Rocky Mountain J. Math., to appear.
Hezenci, F., Budak, H., Some perturbed Newton type inequalities for Riemann-Liouville fractional integrals, Rocky Mountain J. Math., to appear.
Iftikhar, S., Kumam, P., Erden, S., Newton’s-type integral inequalities via local fractional integrals, Fractals 28 (03) (2020), 2050037.
Park, J., On Simpson-like type integral inequalities for differentiable preinvex functions, Appl. Math. Sci. 7 (121) (2013), 6009–6021.
Kilbas, A. A., Srivastava, H. M., Trujillo, J. J., Theory and Applications of Fractional Differential Equations, Elsevier, Amsterdam, 2006.
Noor, M. A., Noor, K. I., Iftikhar, S., Newton inequalities for p-harmonic convex functions, Honam Math. J. 40 (2) (2018), 239–250.
Pecarić, J. E., Proschan, F., Tong, Y. L., Convex Functions, Partial Orderings and Statistical Applications, Academic Press, Boston, 1992.
Sitthiwirattham, T., Nonlaopon, K., Ali, M. A., Budak, H., Riemann-Liouville fractional Newton’s type inequalities for differentiable convex functions, Fractal Fract. 6 (3) (2022), 175.
DOI: http://dx.doi.org/10.17951/a.2022.76.2.15-32
Date of publication: 2023-03-13 22:27:58
Date of submission: 2023-03-12 17:02:28
Statistics
Indicators
Refbacks
- There are currently no refbacks.
Copyright (c) 2022 Fatih Hezenci