Construction of nonuniform periodic wavelet frames on non-Archimedean fields
Abstract
Keywords
Full Text:
PDFReferences
Ahmad, O., Sheikh, N. A., Ali, M. A., Nonuniform nonhomogeneous dual wavelet frames in Sobolev spaces in L2(K), Afrika Math. 31 (2020), 1145–1156.
Ahmad, O., Sheikh, N. A., On Characterization of nonuniform tight wavelet frames on local fields, Anal. Theory Appl. 34 (2018), 135–146.
Ahmad, O., Shah, F. A., Sheikh, N. A., Gabor frames on non-Archimedean fields, Int. J. Geom. Methods Mod. Phys. 15 (5) (2018), 1850079, 17 pp.
Ahmad, O., Ahmad, N., Explicit construction of tight nonuniform framelet packets on local fields, Oper. Matrices (to appear).
Ahmad, O., Ahmad, N., Construction of nonuniform wavelet frames on non-Archimedean fields, Math. Phy. Anal. Geom. (to appear).
Benedetto, J. J., Benedetto, R. L., A wavelet theory for local fields and related groups, J. Geom. Anal. 14 (2004), 423–456.
Christensen, O., An Introduction to Frames and Riesz Bases, Second Edition, Birkhauser, Boston, 2016.
Daubechies, I., Han, B., Ron, A., Shen, Z., Framelets: MRA-based constructions of wavelet frames, Appl. Comput. Harmon. Anal. 14 (2003), 1–46.
Daubechies, I., Grossmann, A., Meyer, Y., Painless non-orthogonal expansions, J. Math. Phys. 27 (5) (1986), 1271–1283.
Duffin, R. J., Shaeffer, A. C., A class of nonharmonic Fourier series, Trans. Amer. Math. Soc. 72 (1952), 341–366.
Gabardo, J. P., Nashed, M., Nonuniform multiresolution analyses and spectral pairs, J. Funct. Anal. 158 (1998), 209–241.
Gabardo, J. P., Yu, X., Wavelets associated with nonuniform multiresolution analysis and one-dimensional spectral pairs, J. Math. Anal. Appl. 323 (2006), 798–817.
Jiang, H. K., Li, D. F., Jin, N., Multiresolution analysis on local fields, J. Math. Anal. Appl. 294 (2004), 523–532.
Lebedeva, E. A., Prestin, J., Periodic wavelet frames and time-frequency localization, Appl. Comput. Harmon. Anal. 37 (2014), 347–359.
Lu, D., Li, D., Construction of periodic wavelet frames with dilation matrix, Front. Math. China. 9 (2014), 111–134.
Ramakrishnan, D., Valenza, R. J., Fourier Analysis on Number Fields, Graduate Texts in Mathematics 186, Springer-Verlag, New York, 1999.
Ron, A., Shen, Z., Affine systems in L2(Rd): the analysis of the analysis operator, J. Funct. Anal. 148 (1997), 408–447.
Shah, F. A., Ahmad, O., Jorgenson, P. E., Fractional wave packet frames in L2(R), J. Math. Phys. 59, 073509 (2018).
Shah, F. A., Ahmad, O., Wave packet systems on local fields, J. Geom. Phys. 120 (2017), 5–18.
Shah, F. A., Ahmad, O., Rahimi, A., Frames associated with shift invariant spaces on local fields, Filomat 32 (9)(2018), 3097–3110.
Shah, F. A., Ahmad, O., Sheikh, N. A., Orthogonal Gabor systems on local fields, Filomat 31 (16) (2017), 5193–5201.
Shah, F. A., Ahmad, O., Sheikh, N. A., Some new inequalities for wavelet frames on local fields, Anal. Theory Appl. 33 (2) (2017), 134–148.
Shah, F. A., Debnath, L., Tight wavelet frames on local fields, Analysis 33 (2013), 293–307.
Taibleson, M. H., Fourier Analysis on Local Fields, Princeton University Press, Princeton, NJ, 1975.
Zhang, Z., Periodic wavelet frames, Adv. Comput. Math. 22 (2005), 165–180.
Zhang, Z., Saito, N., Constructions of periodic wavelet frames using extension principles, Appl. Comput. Harmon. Anal. 27 (2009), 12–23.
DOI: http://dx.doi.org/10.17951/a.2020.74.2.1-17
Date of publication: 2020-12-28 17:41:52
Date of submission: 2020-12-27 14:43:12
Statistics
Indicators
Refbacks
- There are currently no refbacks.
Copyright (c) 2020 Owais Ahmad