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The existence of solutions to the nonhomogeneous
degenerate nonlinear elliptic equations

ABSTRACT. In this paper we are interested in the existence and uniqueness
of solutions for Dirichlet problem associated with the degenerate nonlinear
elliptic equations

— div[A(z, V) wa(2) + B(z, Vu) v1(2)] + H(z, u, Vu)ve + [u’ " uw

n
=po—Y_Djpj,
j=1

u— 7/’ S W017P(Q7w17w2)7
in the setting of the weighted Sobolev spaces.

1. Introduction. In this paper we prove the existence and uniqueness of
(weak) solutions in the weighted Sobolev space W1P(Q, w1, ws) (see Defini-
tion 2.2) for the Dirichlet problem

— div [ A(z, Vu) wa + B(z, Vu) v1] + H(z, u, Vu) va + luP 2w w;

(P) =po— > _Dipj,
=1
U — 1/) € W()Lp(Qv Wi, WQ),
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where Dj = 0/0x; (j = 1,...,n),  is a bounded open set in R", wy, w,
v and vy, are four weight functions, ¢ € WHP(Q, wy,ws) and the functions,
A O xR* 5 R*, B: OQxR*" - R and H : @ x R x R* — R are
Caratheodory functions which satisfy the following conditions:

(H1) z — A(z,&) is measurable on  for all £ € R™,

& Az, ) is continuous on R™ for almost all z € Q.

(H2) (.A(Z‘, g) - A(l’, gl))(g - 6/)) > 0, whenever ¢, 5/ eR", ¢ 7& g, and
Az, &) = (A1(x,€), ..., Ax(z,€)) (where a dot denotes here the Euclidian
scalar product in R™).

(H3) A(x,£)-&€ > \[EP, where A\; is a positive constant and 1 < p < oc.
(H4) |A(z,€)| < hy(x)|€]P/?', where hy is a nonnegative function and h; €
L>*(Q) (with 1/p+1/p' =1).

(H5) x — B(z,§) is measurable on Q for all £ € R",

& — B(z,£) is continuous on R” for almost all z € €.

(H6) (B(z,&) — B(z,¢))(§ — ') = 0, whenever £,¢' € R", £ # ¢ and
B(l‘,f) = (Bl(xag)v e ,Bn(l',é))

(HT) B(z,£)-€ > A2[€]9, where Ay > 0 is a constant and 1 < ¢ < oo.

(H8) |B(z,€)| < ha(x)|€]7/9, 1 < q < 0o, hy is a nonnegative function and
he € L*(Q), 1/¢+1/¢ = 1.

(H9) = — H(z,n,§) is measurable on €2 for all (7,£) € R x R",

(n,&) — H(x,n,§) is continuous on R x R™ for almost all z € Q.

(HlO) [/H(:Cv UR 5) - 7‘[(1‘, 77,75,)](77 - 7]/) > 0, whenever UR 77, € R, n 7& 77,'
(H11) H(x,n,&)n > A3/€]° + As|n|®, where A3 and A3 are nonnegative con-
stants and 1 < s < oo.

(H12) [H(z,n,¢)| < hg(x)\ms/sl + ha(z)|€]*/*', where hz and hy are nonne-
gative functions, with hs and hy € L*°(R2), 1/s+ 1/ = 1.

Let 2 be a bounded open set in R”. By the symbol W(2) we denote the
set of all measurable a.e. in 2, positive and finite functions w = w(z), = € €.
Elements of W(Q2) will be called weight functions. Every weight w gives rise
to a measure on the measurable subsets of R™ through integration. This
measure will be denoted by p,. Thus, u,(E) = [Lpw(x)dx for measurable
sets £ C R™.

In general, the Sobolev spaces WP () without weights occur as spaces
of solutions for elliptic and parabolic partial differential equations. For de-
generate partial differential equations, i.e., equations with various types of
singularities in the coefficients, it is natural to look for solutions in weighted
Sobolev spaces (see [3], [4], [5], [8] and [9]). In various applications we can
meet boundary value problems for elliptic equations whose ellipticity is dis-
turbed in the sense that some degeneration or singularity appears. There
are several very concrete problems from practice which lead to such dif-
ferential equations, e.g. from glaciology, non-Newtonian fluid mechanics,
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flows through porous media, differential geometry, celestial mechanics, cli-
matology, petroleum extraction and reaction-diffusion problems (see some
examples of applications of degenerate elliptic equations in [2] and [7]).

A class of weights, which is particularly well understood, is the class of
A,-weights (or Muckenhoupt class) that was introduced by B. Muckenhoupt
(see [17]). These classes have found many useful applications in harmonic
analysis (see [18]). Another reason for studying A,-weights is the fact that
powers of distance to submanifolds of R" often belong to A, (see [14]). There
are, in fact, many interesting examples of weights (see [12] for p-admissible
weights).

The following theorem will be proved in Section 3.

Theorem 1.1. Assume (H1)-(H12) and wy < wy.

(1) Let 1 < ¢, < p < 00, wy and wy be Ap-weights, vi,v5 € W(Q), e

L™ (Q,wa) (where 11 = p/(p —q)), 2 € L"™*(Qwi) and 2 € L™(Q,wo)

(where 9 :lp/(p - s)) ,

(it) B2 € LV (Q, w1), Z—; ELP(Qw) (j=1,...,n)andp € WHP(Q, w1, wa).
Then the problem (P) has a unique solution u € W1P(Q,wy,ws) with

u—1 € Wol’p(Q,wl,wg).

The paper is organized as follows. In Section 2 we present the definitions
and basics results. In Section 3 we prove our main result about existence
and uniqueness of solutions for problem (P).

2. Definitions and basic results. We recall some standards notations,
properties and results which will be used throughout the paper.

Let w be a locally integrable nonnegative function in R” and assume that
0 < w < oo almost everywhere. We say that w belongs to the Muckenhoupt
class Ay, 1 < p < oo, or that w is an Ap,-weight, if there is a constant
C = Cp (called A,-constant) such that

p—1
e

(,; /Bw(a:)dm> < C’essbinfw, when p = 1,
for all balls B C R"™, where |-| denotes the n-dimensional Lebesgue measure
inR". If1 < ¢ <p,then A; C A, (see [11], [12] or [18] for more information
about A,-weights). The weight w satisfies the doubling condition if there
exists a positive constant C such that pu,(B(z;2r)) < Cuy(B(x;r)), for
every ball B = B(z;r) C R", where pu,(B) = [pw(z)dr. If w € Ay, then
ty, is doubling (see Corollary 15.7 in [12]).

As an example of A,-weight one can take the function w(x) = |z|*, z € R”
which is in A, if and only if —n < a < n(p —1) (see Corollary 4.4, Chapter
IX in [18]). Another example is w(x) = |z|*(max{1, —In(|z|)})?. This is
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an Aj-weight if and only if —n < a < 0 or « = 0 < 3 (see Proposition 7.2
in [1]).
Ifwe A, 1<p<oo,then

(!E!>”<Cuw(E),
1B|) ~  p(B)
whenever B is a ball in R” and E is a measurable subset of B (see 15.5 strong
doubling property in [12]). Therefore, if u,(E) = 0 then |E| = 0. The mea-
sure p,, and the Lebesgue measure |-| are mutually absolutely continuous,
i.e., they have the same zero sets (uy,(E) = 0 if and only if |E| = 0); so
there is no need to specify the measure when using the ubiquitous expression
almost everywhere and almost every, both abbreviated a.e.

In order to discuss the problem (P), we need some elementary results
for weighted Lebesgue spaces LP(€Q,w) and the weighted Sobolev spaces
WP (Q, wy,wa) and Wy (Q, wr, ws).

Definition 2.1. Let w be a weight and let {2 C R™ be a bounded open set.
For 1 < p < oo we define LP(Q2,w) as the set of measurable functions f on

) such that
1/p
1l = < /Q P dx) .

We define LP(Q, w;R"™) = {(p Q=R plPwds < oo}. Denote the
norm of LP(Q,w) and LP(Q,w;R") by ||| 1r(qy.0)-

Ifwe Ay 1<p<oo,then w~1/(=1 is locally integrable and LP(Q,w) C
Ll () for every open set 2 (see Remark 1.2.4 in [19]). It thus makes sense
to talk about weak derivatives of functions in LP(Q,w).

Definition 2.2. Let 2 C R" be a bounded open set and let wy and ws be Ay-
weights (1 < p < 00). We define the weighted Sobolev space W1P(, wy, ws)
as the set of functions v € LP(£2,w;) with weak derivatives Dju € LP(Q, w2)
(or Vu = (Dyu,...,Dyu) € LP(Q,we; R™), Vu is the weak gradient of u).
The norm of u in WHP(£2, wy,ws) is defined by

1/p
(2.1) ]l w1 (@ we) = (/ |u)|Pwq dac+/ |VulPwsy dm) .
Q Q

The space VVO1 P(Q, w1y, ws) is the closure of C§°(£2) with respect to the
norm (2.1). Equipped with this norm, Wol’p(Q,wl,wg) is a reflexive Ba-
nach space (see [8], [15], [16] or [22] for more information about the spaces
WP(Q,wi,ws)). The dual of the space Wol’p(Q,wl,wg) is the space

Wa?(@ @) = {T'= fo—div(F), F=(fi,.... o)

Jo e @w), Be P (@), j=1,... n}

w1 w2
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In this paper we use the following result.

Theorem 2.1. Let w € Ay, 1 < p < 0o and let Q be a bounded open set
in R™. If upy, — w in LP(Q,w), then there exist a subsequence {uy,, } and a
function ® € LP(Q,w) such that

(1) wm, () = u(z), mp — oo a.e. on §;

(1) |tum, ()| < ®(z) a.e. on Q.

Proof. The proof of this theorem follows the lines of the proof of Theorem
2.8.1 in [10]. g

Definition 2.3. We say that an element u € W1P(Q,wy,ws) is a (weak)
solution of equation

— div[A(z, Vu(z))ws () + Bz, Vu(x))v (x)] + H(z, u, Vu)ve + [ulP~?uw;
= po — Z Djpj,
j=1
if
/ A(z,Vu) -Vowsdr + /
Q

B(x,Vu) -Vouv dr + / H(x,u, Vu)p vy dz
Q Q

n
—i—/ \u]p2ug0w1d:c:/p0<pdx+2ijjgodaf
Q Q :
7=1

for all ¢ € WIP(Q,wy,ws), or we can write
/ (H(x,u, Vu)<p2 + [ufPPup — pogo)cul dx
Q w1 w1
+ / (A(:L‘, Vu) -V + B(xz, Vu) -V«pﬂ — p-Vgo) wo dr = 0,
Q w2 w2

where p = (p1,...,pn).
Remark 2.2. (i) If Z—; € L™ (Q,w2) (where r1 = p/(p—q)), then |[ul|Lo(q,)

1 w11y
< Cr2l|ull pr(9,us), Where Ch 2 = Hl/l/ngL/,fi(Q’wQ). In fact, by Holder’s in-
equality we obtain

sy = | fulfvr o
Q
—/ ]u\qﬂwgdaj
Q w2

a/p J—a) (r—9)/q
< (/ |u|q(P/Q)(,J2 da:) </ (1/1/0,)2)1’ P qw2 d:E)
Q Q

= [l gy 11/ 271 (20
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(ii) Analogously, if £2 € L"™(Q,w1) and 22 € L"(Q,w2) (where r2 = p/(p —
s)), then

[ulls (@) < C2allull o)
[ull s (@m) < C2llullLr(.ws)
1/s 1/s
where 02,1 = HVQ/leLW(Q,wl) and 02,2 = ‘|V2/w2||LT2(Q,w2)'

Proposition 2.3. Let 1 < p < oo. There exist two positive constants (3,
Vp such that for every x,y € R,

Bl + 1P 2 le—yl* < (2722~ [ylP2y) - (z—y) < (el + |y 2z —yl.

Proof. See Proposition 17.3 in [6]. O

In the proof of Theorem 1.1 we will use the following result.
Let X be a reflexive Banach space and denote its dual by X*. Let ||| x
be the norm of X and (-,-) be a pairing between X and X*.

Theorem 2.4. Let K be a nonempty closed convexr subset of X and let
T : K — X* be a monotone, coercive and weakly continuous on K. Then
there exists an element u € K such that (Tu,v —u) > 0 whenever v € K.

Proof. See Corollary II1.1.8 in [13]. O

For more information on the theory of monotone operators see [21].

3. Main result. Let X = LP(Q,w;1) X LP(2, w2; R™). The norm of X is

1(g, Hllx = llgllLr@wn) + 1 Lr(@warn),
for each element (g, f) € X (f = (f1,.-.,fn)). Then X is a reflexive Banach

/

space and its dual X* = LP (Q,w1) x LP (Q,wa; R™). Let (-,-) be the usual
pairing between X and X*:

(g1, £, (g2, 1)) = /Q P /Q f - hus da,

(where f = (f1,...,fn) and h = (hy, ..., hy)).
Let ¢ € WP(Q, w1, ws). Define the set

Ky ={(9,Vg): g € WP(Q,wi,ws) and g — ¢ € Wy (Q,wi,w2)}.
Lemma 3.1. Ky is a nonempty closed convexr subset of X.

Proof. (a) Suppose that (u, Vu) € Ky. Hence u € WHP(Q, wi,ws). Then
u € LP(Qwy) and Vu € LP(Q,we;R™). Therefore, (u,Vu) € X. Thus,
IC¢ C X.
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(b) If (ug, Vug) € Ky is a sequence which converges to (g, f) € X (ur —
g in LP(Qwy) and Vup — f in LP(Q,wy), where f = (f1,...,fn) €
LP(Q, we; R™)), then (since wo < wy)

(i /Q g — glPws de = /Q (i — ) — (g — )Pz do
s/Quuk—w—<g—w>\pw1dx:[2\uk—g\pw1dxao,
(if) /Q (Vg — V) — (f — Vi) [P wog d = /Q Vg — fPwsde — 0,

as k — oo. Since wp € Ay, then Vg = f € LP(Q,w,R™) (by the unique-
ness of the gradient). And since uy — ¢ € Wol’p(Q,wl,wg), then g — ¢ €
Wol’p(Q,wl,wg). Hence g € W1P(Q, w1y, ws). Therefore, (g, f) = (g,Vyg) €
Ky. Thus, Ky is closed in X.

(c) Let (u,Vu),(v,Vv) € Ky and o € [0,1]. Then au+ (1 — a)v €
WLP(Q, wi,ws) and

au+ (1 —a)p -1 =a(u—1¢) + (1 —a)(v—1) € WyP(Q,wi,ws).

Hence a(u, Vu) + (1 — &) (v, Vo) = (au+ (1 —a)v, V(iau+ (1 — a)v)) € Ky.
Therefore, Ky is convex in X. ]

Now, define a mapping 7 : Ky — X™* by the formula

T (u, V) = (H(x,u, V)2 4 [up2u— 22,
(3.1) 1 1

Az, Vu) + B(x, Vu)ﬂ — ,0)’

w2 w2

where p = (p1,...,pn). For convenience, we denote T (u, Vu) simply by
T (u). For each element (g, f) € X, we have

(T(w), (9. f)) = /

<H(:c, u, Vu)2 + |uP?u — po) gwi dx
QO w1 w

1

+/ (A(m,Vu) + B(u, Vu)ﬂ — p> fwadz
Q

w2 w2

Z/H(x,u,Vu)gUde+/ |u|p_2ugw1dx—/pogda:
Q Q Q

+/QA(x,Vu)~fw2dx—|—/QB($,Vu).fV1dx—/Qp-qu:.
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(i) By assumption (H4) we have

/ Az, Vu)-f wa dz
Q

< /Q A, V)| || wp d

1
(3.2) < [ maivup-tilunda
1
< ey IVl ey o 1
< 1 oyl VI (9 )

(ii) By assumption (H8) and Remark 2.2(i) we obtain

/B(:L’, Vu)-f vy de
Q

< [ 1B, Vu)l |1 da
Q
g/h2|Vu]q1\f|y1 da
Q

. 1/q' 1/q
(3.3) < llhall o) </ V| @D, d:c> (/ | fln dx)
Q Q

-1
= Hh2||Loo Hvu”%q(g ) ||f||L‘1(Q,1/1)
1
< 2l oo () Ol IV 00y Cr2 1l o s2.0)

< Cl,2||h2”L°°(Q)||(u7VU’)HX (g, F)ll x-

(iii) By (H12) and Remark 2.2(ii) we get

/H(m,u,Vu)gl/gdx S/ |H(x,u, Vu)||g|va dx
Q Q

g/ <h3]u\5_1+h4|Vu]S_1)\g\u2dac
Q

< 1103 ) poo 10l 7 () 19 5 (@20

+ 1l oo @) VU175 (um) 191l L5 (0100)
< Hh3HL°° 0511”UHLP (Q,w1) Co 1”9”L$’(Q,w1)

+ ||h4HL°°(Q)C§21HVUHLP 2.0 21191 Lo (0.00n)
< C'Jl(u, Vi) 51, )55

where €' = max{C3 [|hs]| o (), C2.1C55" 1 hall Lo (0 }-
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(iv) We also have
‘ / lulP~?u g wy da

(v) Moreover,

1
/ P glewr da < s o 190 o)

< [, V) Il g, £l x-

pogdx+/ p-fdx
Q

(3.6) < Q'Z(" d:c+/ |p||f\w da

< o/t o 9y + 1072l 1y |
< (Ip0/w1ll 1ty + 12/l ot g0 ) 10 ) -

Therefore, by (i), (ii), (iii), (iv) and (v), 7 (u) € X* for each (u, Vu) € Ky
and the mapping 7T is well defined.

Lemma 3.2. The mapping T defined in (3.1) is monotone and coercive.

Proof. (I) If (u, Vu), (f,Vf) € Ky, then

= (’1’=[($,U,Vu):2 + |uPu — £~ JA(z, Vu) + B(x, Vu )— — p>

w1 w2 w2

p— 2 PO Y1 ﬁ
s~ (HELVDZ 12— 2 A ) + B )2 - L)

w2

_ <’H(az . ij e TNl

Az, V) — Az, V) + B(a, vu)j2 — Bz, w)i).

Then by assumptions (H2), (H6) and (H10) we have
(T(u) = T(f), (u, Vu) = (f, V.f))
= /Q (H(:c,u, Vu) — H(z, f, Vf))(u — flvedx
+ [l u = [fP72F) (= f)wr do

+ [ (A(z, Vu) — A(z, V) V(u— f)ws dz

+

S— S— 55—

(B(ﬂ:, Vu) — B(x,Vf))-(Vu —Vf)vidx >0,
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since, by Proposition 2.3,

(Jul?=2u = [£P72 ) (u— £) = Bp(Jul + |f)P2|u— f| > 0

(if u # f). Hence, T is monotone.
(IT) Let (f,Vf) € Ky be fixed. For each (u,Vu) € Ky, by assumptions
(H6) and (H10), we have

(T(u) =T(f), (u, Vu) = (f, V[))
/Q (H(z,u, Vu) — H(z, f, V) (u— f)rodx

s [ a1 - e
58) [ (A V)~ A V1) Tl e
—i—/ﬂ <B($,Vu) —B(%Vf))‘(Vu—Vf) v da
> [ ) - e ds
+/Q(A(x,Vu) — Az, Vf))-V(u— f)wsdz.

By (H3) and (3.2), we obtain

/(A(az,Vu) - A(z,V[))-V(u— fwsdz
Q
:/A(mqu) -Vuwgdm—l—/.A(x,Vf) -V fwedx
Q Q
—/A(x,Vu) -Vfwgdx—/.A(:r,Vf) Vuws dx
Q Q
(39) 2A1/9|Vupw2d:n—|—>\1/Q|Vf|pwzd:E
—/.A(x,Vu)-Vfwgd:c—/A(a:,Vf) Vuws dx
Q Q
2)\1/ |Vupw2dw+)\1/ |V f|Pws dx

thHLoom ”V“HLp QwQ)vaHLP(Q,wg)
— [11all oo @ IV F 1 (o 1V 22 0
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Moreover, by (3.5) we have
Ll 2 u= 1772 1) = fy da

:/|u\pw1dm~l—/|f|pw1d:n
Q Q

(3.10) —/ |u|p’2ufw1 dx—/ |f’p72fuw1 dx
[¢) Q

Z/]u\pwldx—i—/mpwld:c
Q Q

Nl o 1 oy = 11 Tl )
Hence, by (3.8), (3.9) and (3.10) we obtain

>01<HuH o + 170, Qw2+|rfumml+\|Vf|rm(gm))

(3.11)
— Co | IVl oo IV F o (205) T IV F 1 tcr o IV 0

by 1 gy + 112 le)nuumwl)),

where C1 = min{1, A1} and C2 = max{l, [|h1]|fe(q)}. To estimate the
right-hand side of (3.11) from below, we use the inequality (Z?:l ) <
4qZ] y ¢ forall ¢; >0 (j =1,2,3,4) and ¢ > 0. We have

(@) (I, Vu)llx + [I(f, V)l x)”
= (lull o @uny + IVl o) + 1 Lo @) F IVl Lr(ws))”

< 4p(uu||’zpm,wl) 19Uy + 1y + IV )

) 1Vl IV o) + 1l i 1o 0n)
< 1, V)5 CE V)l x
< (1w, V)l + I VP I VD s
© IVl o IV I i) + 10l oo 1 o)
< |I(u, V)l I1F, VA
< (1w, V)l + 1L YOI VIR
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Now using (a), (b) and (c), from (3.11) we obtain
(T(w) = T(f): (u, Vu) = (f, V)
Ci(ll(u, V)l x + 1, VA x)”

Oo(|l(u, V)|l + 1L VP )P I V)
— Col|l(u, Vi)l + (£ VO I VAR

1
> —
4p

Thus,
(T(w) = T(f), (w,Vu) = (£, V)
1(u, Vu) = (f, V)l x
> (T(w) = T(f), (u,Vu) — (f,Vf))
(3.12) (. Vu)llx + 11(£, V)l

> @ Crll(u, V)l x + I VA )"

= Co(ll(u, V)l + I VAL P2 V) x
- Gall(£ VNI
For each sequence (uy, Vuy) € KCy with [|(ug, Vug)|| y — oo, we have

[Cur, Vur) [ x + 10, V)l x = [[(ur, Vug) | x — oo

It follows that
1

1 Ol Vun)lx + £V DlLx)”™
— Ca (|| (ur, Vel + 15 VHl) " N(E VP x
B3 _ T A /i
[k, Vi) | x + 11(F, V)l x

% (Il Fu) e + (VD)™ = 00, as k0.

Combining (3.12) and (3.13), we obtain
(T (uk) = T(f), (up, Vug) — (f, V)

[[(uk, Vur) = (f, VI)llx

Therefore, T is coercive in Ky. O

— 00, as k— oo.

Lemma 3.3. The mapping T defined in (3.1) is weakly continuous.
Proof. If (u,Vu), (f,Vf) € Ky, then
(T(w)=T(f),(f,V[))

:/Q(B(m,Vu)—B(az,Vf))-nyld:z%—/Q(.A(x,Vu)—A(x,Vf))-Vfwgda:
+/ (H(a;,u,Vu)—?—[(x,f,Vf))vada:—i-/ (lufP"?u— P72 f) fw: da.
Q Q
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The mapping 7 is weakly continuous on ICy if T (up,) converges to T (u)
weakly in X*, i.e., (T (um),(f,Vf)) = (T (u),(f,V[)) whenever (t,, Vi),
(u, Vu) € Ky, (Um, Vum) = (u, Vu) in X. It suffices to prove that (T (um,) —
T(w),(f,Vf)) =0, for (f,Vf)eX.

(a) We define the operators G : Ky — L% (Q,11) (for j=1,2,...,n) by the
formula

(Gju)(z) = Bj(z, Vu).

We now show that the operator G; is bounded and continuous.
(i) By (H8) and Remark 2.2(i) we have

Gl )= | G vrd
= / |B;(x, vu)|? vy da
Q

! ql
S/ (hg\Vu|q/q> vidx
Q

< HhQHq/oo(Q)/Q|qul/1dx

/ q/p
< Cllltalle oy ([ Vi)

:CiIQHhZquo HVUHLP(Qw2

< O ol g | 0, T
Hence, G is bounded.
(ii) If (wm, V) = (u, Vu) € Ky, then Vu,, = Vu in LP(,wz). By The-

orem 2.1 there exists a subsequence {u,,, } and functions ®; € LP(,w1),
&y € LP(2,w2) such that

U, () = u(z) a.e. in Q;
|tm, (] < P1(x) a.e. in
Dy, — Dju(z) a.e. in Q;
|V, ()] < Pa(x) a.e. in €
Next, applying (H8), we obtain

(3.14)

|G i, — Gul? vy = |B; (2, Vg, ) — Bj (2, V)|V 1y
< Cy(1Bj(@, V)7 + |Bj (x, V) |* ) vy da
< Cy[(hal Vet [T + (o V717 |11
<2C Hh2||qoo @1 € LH(9Q),
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where C, depends only on ¢ and by Remark 2.2(i),

q/p
/@guldx§0f2(/ @gw2dx) .
Q ’ Q

By condition (H5), we have Gjum, (x) =Bj(x, Vun, ) = Bj(z, Vu) = G;u(z),
as my — 0o. Therefore, by the Lebesgue Dominated Convergence Theorem,
we obtain

HGJumk - Gju||Lq’(Q7V1) — 07

that is, Gy, — Guin LY (,v1). From the Convergence Principle in Banach
spaces (see Proposition 10.13 in [20]) we conclude that

(3.15) Gjum — Gju in LY (Q,11).

(b) We define the operators F} : ICy, — LP (Q,w2) (j=1,2,...,n) by the for-
mula
(Fju)(x) = Aj(z, Vu).
We show that this operator is bounded and continuous.
(i) Using (H4), we obtain

IFSuly gy = | 1@

= / A (z, Vu) [P wy dz
Q

/

AP
g/ <h1|Vu\p/p> wadz
Q

< [l [ [Vl wado
Q

S A A 2.
<l V) .

Hence, F} is bounded.
(ii) If (wm, V) = (u,Vu) € Ky, then Vu,, = Vu in LP(Q,ws). By (3.14)
and (H4) we obtain

| F i, — FjulP wo = | A; (2, Vug) — Aj (2, V) [P ws

< Cp<|Aj<w7wmk>rp’ T \Aj<x,Vu>\p’) s
<C, (hzf, |V, [P+ hlfl |Vu]p> w9

< 2C,||hY,

oo (e Pow2 € LH(Q),

where C), depends only on p.
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By condition (H1) we have Fjum, (x) = A;(x, Vun,) = Aj(z, Vu) = Fju(z),
as my, — 0o. Therefore, by the Lebesgue Dominated Convergence Theorem,
we obtain

HFjumk_FjuHLp’( )—>0>

Q,wa

that is, Fju,, — Fju in LPI(Q,wg). From the Convergence Principle in
Banach spaces (see Proposition 10.13 in [20]) we conclude that

(3.16) Fjttn — Fju in LP'(,ws).
¢) We define the operator H : Ky — L (Q,v5) by the formula
P
(Hu)(x) =H(x,u, Vu).
(i) Using (H12) and Remark 2.2(i), we have
||]'17u\|8L/s/(Q v2) :/ |Hul* vy da :/ H (2,0, Vu)[* vy da
’ Q Q

/

S/ (hg]u]5/5,+h4]Vu\s/sl) vodx
Q
SCS/ <h§,|U|S+hil|Vu|s>u2dx
Q
SCS(’h3||sLoo(Q)/Q|U‘SV2dSC+||h4HLoo(Q)/Q|Vu]SV2dm>
, s/p
SCS |:Hh3”ioo(g)02571(/Q"U,‘puﬂdm')

’ s/p
+||h4|rioom)05,2( / wumdl«) ]

s/p s/p
SCSC[</ ]u\pwldac> + (/ \Vu]pwgdx> }
Q Q

< Cs Cl(u, V)l

where €' =max{C3 |3/l (0 C52 a7 ) -
(i) If (wm, V) = (u, Vu) € Ky, analogously to what was demonstrated
with the operators G, F; and by (3.14),

/

[ H () — H ()| va = [H(@, iy s Vit ) = H(w,u, V) [* vy

<, <|H($,umk,Vumk)|s/ + |H(ZL‘,U,VU)|S/> Vo
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/ !

_C’SKh3|umk|s/sl+h4|Vumk|s/s/> +<h3|u|s/sl+h4|VuS/S/> ]m
scs[(\hsnzw(mrummHh4||m(mrwmkS)

T (uhsuzoo(mww ol rwfﬂw
< 2C,(|1h3| 70 () +Hh4HLoo <I>S)V2€L1(Q)

since, by Remark 2.2(ii),

s/p s/p
/@‘fygdeC';l(/(I)fwldx) and /@gygd:chSQ(/(I)gwdw) :
Q " \Ja Q “\Ja

By condition (H9) we have Huy,, () =H(z,Um,, Vim,) = H(z,u, Vu) =
Hu(x), as my — oo. Therefore, by the Lebesgue Dominated Convergence
Theorem, we obtain

HHU’mk — HUHLS,(Q7V2) — 0,

that is, Huy,, — Hu in L¥ (Q,12). From the Convergence Principle in Ba-
nach spaces (see Proposition 10.13 in [20]) we conclude that

(3.17) Huy, — Hu in L (Q,15).
(d) We define the operator J : Ky, — LP' (Q,w;) by the formula

(Ju)(x) = Ju(@) P~ u(z).
(i) If (u,Vu) €y, then

/ |ul? wy dz

< | (u, V) Il

(ii) If (wm,Vum)— (u,Vu) € Ky, analogously to what was demonstrated
with the operators G, Fj, H and by (3.14), we obtain

(3.18) Jtm — Ju in LP (Q,w).
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Therefore, if (tm, V) = (u, Vu) in Ky, by Remark 2.2(i), (i) we have
\(T( T (u),(f, V)

( x, Vi) B-(m,Vu)) Djfvidx

+Z/ ( (z, V) .Aj(:z,Vu)) Djfwydx
+/ <’H($,um,Vum)—’H($,u,Vu)> furadx
Q

+/(\um\p_Qum—Mp_zu)fwldx
Q

<> /IGij—GjU|Djf|V1dx+§ /|Fjum—Fju||Dij2da:
— /o — Ja
Jj=1 7j=1
+/ |Hum—Hu|f|1/2dx+/ | Jwm, — Jul| f|lwr dx
Q Q

< Z Gt — GjuHLq/(Q,yl) HDijLQ(Q’yl)
j=1

n
+ Z ([ Fjtm — FjuHLp’(QMQ) HDijLp(Q,wQ)
j=1
+ HHum — HUHLS/(Q,VZ) ”f”LS(Q,l/Q) + HJUm - JUHLP/(Q,wl)Hf||LP(Q,w1)

< Cra( Y161 = Gl ) 19 s

j=1

; (Z | Fytn — Fjuumm,m) 19 ia o

=1
+ CoallHum — Hull L o) 1 f | Lo (@) + 1T tm = Jull ot () 1 | 2o (000

n n
< <C1-2 Z |G tm — GjUHLq’(Q,Vl) + Z || Fjtim — Fju”Lp/(Q,W2)

j=1 j=1
+0271||Hum_HUHLS'(Q,VQ)+‘Jum_‘]uHLP’(Q,wl)>H(fvvf)HX'
Hence, using (3.15), (3.16), (3.17) and (3.18), we have

as m — oo, that is, 7 is weakly continuous. O
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4. Proof of Theorem 1.1.
Existence of solution. Based on Lemma 3.1, Lemma 3.2 and Lemma 3.3,
by Theorem 2.4 there exits an element (u, Vu) € ICy such that

(T(uw), (f,Vf) = (u,Vu)) >0

whenever (f,Vf) € Ky. For each ¢ € Wol’p(Q,wl,wg), we have u + ¢ — ¢
=(u—vY)+¢c€ Wol’p(Q,wl,wQ). Therefore, (u + ¢, Vu + V) € Ky and
(u—¢,Vu—Vy) € Ky. Then

(T(w), (¢, Vo)) = (T (u), (u+ @, Vu+ V) = (u, Vu)) = 0
and
(T(w), (¢, V) = =(T(u), (u— ¢, Vu—= V) = (u, Vu)) <0.
Therefore, (T (u), (¢, Vi)) = 0, that is,

/B(x,Vu)-Vgoul dx—i—/.A(:z,Vu)-Vgowzdx
Q Q

—i—/?—l(x,u,Vu)cpugda:—i—/ lulP"2u pw dx
9) Q

n
:/pogpdac+2/ijjcpd1:,
Q = Je

for all p € Wol’p(Q, wy,ws), that is, u is a solution to problem (P).
Uniqueness. For the uniqueness, let u; and ug be two solutions to prob-
lem (P), with u; — ¢ € WyP(Qwi,ws) (i = 1,2). Since ¢, ui,ug €
WP(Q,w1,w2) and w1 — up = (u1 — %) — (ug — ) € Wy (Q, wi,ws), then
/ B(x,Vui) -V(us —ug) vy dx + / Az, Vuy)-V(uy — ug) wy dz
Q Q
—|—/ H(z,u1, Vuy))(ug — ug) vo dx +/ |u1\p_2u1(u1 — ug) wy dx
Q Q

:/Po(u1—U2)dw+/p-V(ul—Uz)dw,
Q Q

and

/ B(z,Vua)-V(u1 — ug) vy de + / Az, Vug)-V(uy — ug) we dz
Q Q
+ / H(x,ug, Vug)(ug — ug) vo do + / |uz|p_2uz (ug — ug) wy dx
Q Q

:/po(ul—u2)d$+/p-V(ul—UQ)d:p.
Q Q
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Hence,
/Q (B(% V) - Bz, Vu2)> V(up —ug) vi dx
+ /Q <A(w,Vu1) —A(w,vu2)>.v(ul ) wpde
+ /Q(H(m,m,Vul) — H(x, u, Vuz)) (1 — uz) vo dz

+ / (Jur [P~ 2wy — |uglP2ug) (u1 — ug) wi d = 0,

and by (H2), (H6), (H10) and Proposition 2.3 we have

(B ,Vuy) — B(x VuQ)) V(up —ug)vidz =0

<A x,Vuy) — Az, Vu2)> V(up — ug)we dx =0,
(H(w, ur, Vuy) — H(x, ug, Vm)) (u1 — ug) vodx =0,

(lur [P~ 2ur — |ualP2ug) (u1 — ug) wi dz = 0.

S—5— 55— 5—

Thus,

/ <A(x, Vuy) — Az, Vu2)> -V (u1 — ug)we dx dx = 0.
{Vui# Vua}

By (H2) and wy € Ay, we obtain [{Vu; # Vug}| = 0 and Vu; = Vuy ae.
in Q. Since u; — ug € Wol’p(Q,wl,wg), we conclude that u; = ug a.e. in €.

Theorem 1.1 is thereby proved.

Example 4.1. Let Q = {(z,y) € R? : 22 +3? < 1}. For (z,y) € R?

€= (£,6)€R?, neER, p=4and ¢ = s = 3, consider the functions
Al(x,),€) = €[ (cos(x/ (2 + %)) +2)
B((2,y),€) = €¢] (sin(y/(«* + y*)) + 2),
H((x,y),n,€) = nlnl(1 + cos®(xy))
wilw,y) = (@ +y") 7 and wa(z,y) = (2® + )"
vi(z,y) = (2° +y°)* and w(w,y) = (2 + )75,

po(z,y) =

m and p(z,y) = (Z(;szg, jffii)
and ¥(z,y) = sin(z +y).

Therefore, by Theorem 1.1, the problem (P) has a unique solution u €

W1’4(Q, w1, UJQ).
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