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The existence of solutions to the nonhomogeneous
degenerate nonlinear elliptic equations

Abstract. In this paper we are interested in the existence and uniqueness
of solutions for Dirichlet problem associated with the degenerate nonlinear
elliptic equations

− div
[
A(x,∇u)ω2(x) + B(x,∇u) ν1(x)

]
+H(x, u,∇u)ν2 + |u|p−2uω1

= ρ0 −
n∑

j=1

Djρj ,

u− ψ ∈W 1,p
0 (Ω, ω1, ω2),

in the setting of the weighted Sobolev spaces.

1. Introduction. In this paper we prove the existence and uniqueness of
(weak) solutions in the weighted Sobolev space W 1,p(Ω, ω1, ω2) (see Defini-
tion 2.2) for the Dirichlet problem

(P )


−div

[
A(x,∇u)ω2 + B(x,∇u) ν1

]
+H(x, u,∇u) ν2 + |u|p−2uω1

= ρ0 −
n∑
j=1

Djρj ,

u− ψ ∈W 1,p
0 (Ω, ω1, ω2),
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where Dj = ∂/∂xj (j = 1, . . . , n), Ω is a bounded open set in Rn, ω1, ω2,
ν1 and ν2, are four weight functions, ψ ∈W 1,p(Ω, ω1, ω2) and the functions,
A : Ω × Rn → Rn, B : Ω × Rn → Rn and H : Ω × R × Rn → R are
Caratheodory functions which satisfy the following conditions:
(H1) x 7→ A(x, ξ) is measurable on Ω for all ξ ∈ Rn,
ξ 7→ A(x, ξ) is continuous on Rn for almost all x ∈ Ω.
(H2) (A(x, ξ)−A(x, ξ′))·(ξ − ξ′)) > 0, whenever ξ, ξ′ ∈ Rn, ξ ̸= ξ′ and
A(x, ξ) = (A1(x, ξ), . . . ,An(x, ξ)) (where a dot denotes here the Euclidian
scalar product in Rn).
(H3) A(x, ξ)·ξ ≥ λ1|ξ|p, where λ1 is a positive constant and 1 < p <∞.
(H4) |A(x, ξ)| ≤ h1(x)|ξ|p/p

′
, where h1 is a nonnegative function and h1 ∈

L∞(Ω) (with 1/p+ 1/p′ = 1).
(H5) x 7→ B(x, ξ) is measurable on Ω for all ξ ∈ Rn,
ξ 7→ B(x, ξ) is continuous on Rn for almost all x ∈ Ω.
(H6) (B(x, ξ)− B(x, ξ′))·(ξ − ξ′)⟩ ≥ 0, whenever ξ, ξ′ ∈ Rn, ξ ̸= ξ′ and
B(x, ξ) = (B1(x, ξ), . . . ,Bn(x, ξ)).
(H7) B(x, ξ)·ξ ≥ λ2|ξ|q, where λ2 > 0 is a constant and 1 < q <∞.
(H8) |B(x, ξ)| ≤ h2(x)|ξ|q/q

′
, 1 < q < ∞, h2 is a nonnegative function and

h2 ∈ L∞(Ω), 1/q + 1/q′ = 1.
(H9) x 7→ H(x, η, ξ) is measurable on Ω for all (η, ξ) ∈ R× Rn,
(η, ξ) 7→ H(x, η, ξ) is continuous on R× Rn for almost all x ∈ Ω.
(H10) [H(x, η, ξ)−H(x, η′, ξ′)](η − η′) > 0, whenever η, η′ ∈ R, η ̸= η′.
(H11) H(x, η, ξ)η ≥ λ3|ξ|s +Λ3|η|s, where λ3 and Λ3 are nonnegative con-
stants and 1 < s <∞.
(H12) |H(x, η, ξ)| ≤ h3(x)|η|s/s

′
+ h4(x)|ξ|s/s

′
, where h3 and h4 are nonne-

gative functions, with h3 and h4 ∈ L∞(Ω), 1/s+ 1/s′ = 1.
Let Ω be a bounded open set in Rn. By the symbol W(Ω) we denote the
set of all measurable a.e. in Ω, positive and finite functions ω = ω(x), x ∈ Ω.
Elements ofW(Ω) will be called weight functions. Every weight ω gives rise
to a measure on the measurable subsets of Rn through integration. This
measure will be denoted by µω. Thus, µω(E) =

∫
E ω(x) dx for measurable

sets E ⊂ Rn.
In general, the Sobolev spaces W k,p(Ω) without weights occur as spaces
of solutions for elliptic and parabolic partial differential equations. For de-
generate partial differential equations, i.e., equations with various types of
singularities in the coefficients, it is natural to look for solutions in weighted
Sobolev spaces (see [3], [4], [5], [8] and [9]). In various applications we can
meet boundary value problems for elliptic equations whose ellipticity is dis-
turbed in the sense that some degeneration or singularity appears. There
are several very concrete problems from practice which lead to such dif-
ferential equations, e.g. from glaciology, non-Newtonian fluid mechanics,
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flows through porous media, differential geometry, celestial mechanics, cli-
matology, petroleum extraction and reaction-diffusion problems (see some
examples of applications of degenerate elliptic equations in [2] and [7]).
A class of weights, which is particularly well understood, is the class of

Ap-weights (or Muckenhoupt class) that was introduced by B. Muckenhoupt
(see [17]). These classes have found many useful applications in harmonic
analysis (see [18]). Another reason for studying Ap-weights is the fact that
powers of distance to submanifolds of Rn often belong to Ap (see [14]). There
are, in fact, many interesting examples of weights (see [12] for p-admissible
weights).
The following theorem will be proved in Section 3.

Theorem 1.1. Assume (H1)–(H12) and ω2 ≤ ω1.
(i) Let 1 < q, s < p < ∞, ω1 and ω2 be Ap-weights, ν1, ν2 ∈ W(Ω), ν1ω2

∈
Lr1(Ω, ω2) (where r1 = p/(p − q)), ν2

ω1
∈ Lr2(Ω, ω1) and ν2

ω2
∈ Lr2(Ω, ω2)

(where r2 = p/(p− s)).
(ii) ρ0ω1

∈ Lp
′
(Ω, ω1),

ρj
ω2

∈ Lp
′
(Ω, ω2) (j = 1, . . . , n) and ψ ∈W 1,p(Ω, ω1, ω2).

Then the problem (P) has a unique solution u ∈ W 1,p(Ω, ω1, ω2) with
u− ψ ∈W 1,p

0 (Ω, ω1, ω2).

The paper is organized as follows. In Section 2 we present the definitions
and basics results. In Section 3 we prove our main result about existence
and uniqueness of solutions for problem (P ).

2. Definitions and basic results. We recall some standards notations,
properties and results which will be used throughout the paper.
Let ω be a locally integrable nonnegative function in Rn and assume that

0 < ω <∞ almost everywhere. We say that ω belongs to the Muckenhoupt
class Ap, 1 ≤ p < ∞, or that ω is an Ap-weight, if there is a constant
C = Cp,ω (called Ap-constant) such that(

1

|B|

∫
B
ω(x)dx

)(
1

|B|

∫
B
ω1/(1−p)(x)dx

)p−1

≤ C, when 1 < p <∞,(
1

|B|

∫
B
ω(x)dx

)
≤ C ess inf

B
ω, when p = 1,

for all balls B ⊂ Rn, where |·| denotes the n-dimensional Lebesgue measure
in Rn. If 1 < q ≤ p, then Aq ⊂ Ap (see [11], [12] or [18] for more information
about Ap-weights). The weight ω satisfies the doubling condition if there
exists a positive constant C such that µω(B(x; 2r)) ≤ Cµω(B(x; r)), for
every ball B = B(x; r) ⊂ Rn, where µω(B) =

∫
B ω(x) dx. If ω ∈ Ap, then

µω is doubling (see Corollary 15.7 in [12]).
As an example of Ap-weight one can take the function ω(x) = |x|α, x ∈ Rn
which is in Ap if and only if −n < α < n(p− 1) (see Corollary 4.4, Chapter
IX in [18]). Another example is ω(x) = |x|α(max{1,− ln(|x|)})β. This is
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an A1-weight if and only if −n < α < 0 or α = 0 ≤ β (see Proposition 7.2
in [1]).
If ω ∈ Ap, 1 < p <∞, then(

|E|
|B|

)p
≤ C

µω(E)

µω(B)
,

whenever B is a ball in Rn and E is a measurable subset of B (see 15.5 strong
doubling property in [12]). Therefore, if µω(E) = 0 then |E| = 0. The mea-
sure µω and the Lebesgue measure |·| are mutually absolutely continuous,
i.e., they have the same zero sets (µω(E) = 0 if and only if |E| = 0); so
there is no need to specify the measure when using the ubiquitous expression
almost everywhere and almost every, both abbreviated a.e.
In order to discuss the problem (P ), we need some elementary results
for weighted Lebesgue spaces Lp(Ω, ω) and the weighted Sobolev spaces
W 1,p(Ω, ω1, ω2) and W

1,p
0 (Ω, ω1, ω2).

Definition 2.1. Let ω be a weight and let Ω ⊂ Rn be a bounded open set.
For 1 < p < ∞ we define Lp(Ω, ω) as the set of measurable functions f on
Ω such that

∥f∥Lp(Ω,ω) =

(∫
Ω
|f |pω dx

)1/p

<∞.

We define Lp(Ω, ω;Rn) =
{
φ : Ω → Rn :

∫
Ω |φ|pω dx < ∞

}
. Denote the

norm of Lp(Ω, ω) and Lp(Ω, ω;Rn) by ∥·∥Lp(Ω,ω).

If ω ∈ Ap, 1 < p <∞, then ω−1/(p−1) is locally integrable and Lp(Ω, ω) ⊂
L1
loc(Ω) for every open set Ω (see Remark 1.2.4 in [19]). It thus makes sense
to talk about weak derivatives of functions in Lp(Ω, ω).

Definition 2.2. Let Ω ⊂ Rn be a bounded open set and let ω1 and ω2 be Ap-
weights (1 < p <∞). We define the weighted Sobolev spaceW 1,p(Ω, ω1, ω2)
as the set of functions u ∈ Lp(Ω, ω1) with weak derivatives Dju ∈ Lp(Ω, ω2)
(or ∇u = (D1u, . . . ,Dnu) ∈ Lp(Ω, ω2;Rn), ∇u is the weak gradient of u).
The norm of u in W 1,p(Ω, ω1, ω2) is defined by

(2.1) ∥u∥W 1,p(Ω,ω1,ω2) =

(∫
Ω
|u|pω1 dx+

∫
Ω
|∇u|pω2 dx

)1/p

.

The space W 1,p
0 (Ω, ω1, ω2) is the closure of C∞

0 (Ω) with respect to the
norm (2.1). Equipped with this norm, W 1,p

0 (Ω, ω1, ω2) is a reflexive Ba-
nach space (see [8], [15], [16] or [22] for more information about the spaces
W 1,p(Ω, ω1, ω2)). The dual of the space W

1,p
0 (Ω, ω1, ω2) is the space

[W 1,p
0 (Ω, ω1, ω2)]

∗ =
{
T = f0 − div(F ), F = (f1, . . . , fn) :

f0
ω1

∈ Lp
′
(Ω, ω1),

fj
ω2

∈ Lp
′
(Ω, ω2), j = 1, . . . , n

}
.
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In this paper we use the following result.

Theorem 2.1. Let ω ∈ Ap, 1 < p < ∞ and let Ω be a bounded open set
in Rn. If um → u in Lp(Ω, ω), then there exist a subsequence {umk

} and a
function Φ ∈ Lp(Ω, ω) such that
(i) umk

(x) → u(x), mk → ∞ a.e. on Ω;
(ii) |umk

(x)| ≤ Φ(x) a.e. on Ω.

Proof. The proof of this theorem follows the lines of the proof of Theorem
2.8.1 in [10]. □

Definition 2.3. We say that an element u ∈ W 1,p(Ω, ω1, ω2) is a (weak)
solution of equation

− div[A(x,∇u(x))ω2(x) + B(x,∇u(x))ν1(x)] +H(x, u,∇u)ν2 + |u|p−2uω1

= ρ0 −
n∑
j=1

Djρj ,

if ∫
Ω
A(x,∇u) ·∇φω2 dx+

∫
Ω
B(x,∇u) ·∇φν1 dx+

∫
Ω
H(x, u,∇u)φν2 dx

+

∫
Ω
|u|p−2uφω1 dx =

∫
Ω
ρ0φdx+

n∑
j=1

ρjDjφdx

for all φ ∈W 1,p(Ω, ω1, ω2), or we can write∫
Ω

(
H(x, u,∇u)φ ν2

ω1
+ |u|p−2uφ− ρ0

ω1
φ

)
ω1 dx

+

∫
Ω

(
A(x,∇u) ·∇φ+ B(x,∇u) ·∇φ ν1

ω2
− ρ

ω2
·∇φ

)
ω2 dx = 0,

where ρ = (ρ1, . . . , ρn).

Remark 2.2. (i) If ν1ω2
∈ Lr1(Ω, ω2) (where r1 = p/(p−q)), then ∥u∥Lq(Ω,ν1)

≤ C1,2∥u∥Lp(Ω,ω2), where C1,2 = ∥ν1/ω2∥1/qLr1 (Ω,ω2)
. In fact, by Hölder’s in-

equality we obtain

∥u∥qLq(Ω,ν1)
=

∫
Ω
|u|qν1 dx

=

∫
Ω
|u|q ν1

ω2
ω2 dx

≤
(∫

Ω
|u|q (p/q)ω2 dx

)q/p(∫
Ω

(
ν1/ω2

)p/(p−q)
ω2 dx

)(p−q)/q

= ∥u∥qLp(Ω,ω2)
∥ν1/ω2∥Lr1 (Ω,ω2).
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(ii) Analogously, if ν2ω1
∈ Lr2(Ω, ω1) and ν2

ω2
∈ Lr2(Ω, ω2) (where r2 = p/(p−

s)), then

∥u∥Ls(Ω,ν2) ≤ C2,1∥u∥Lp(Ω,ω1),

∥u∥Ls(Ω,ν2) ≤ C2,2∥u∥Lp(Ω,ω2),

where C2,1 = ∥ν2/ω1∥1/sLr2 (Ω,ω1)
and C2,2 = ∥ν2/ω2∥1/sLr2 (Ω,ω2)

.

Proposition 2.3. Let 1 < p < ∞. There exist two positive constants βp,
γp such that for every x, y ∈ Rn,

βp(|x|+ |y|)p−2|x−y|2 ≤ (|x|p−2x−|y|p−2y) ·(x−y) ≤ γp(|x|+ |y|)p−2|x−y|.

Proof. See Proposition 17.3 in [6]. □

In the proof of Theorem 1.1 we will use the following result.
Let X be a reflexive Banach space and denote its dual by X∗. Let ∥·∥X
be the norm of X and ⟨· , ·⟩ be a pairing between X and X∗.

Theorem 2.4. Let K be a nonempty closed convex subset of X and let
T : K → X∗ be a monotone, coercive and weakly continuous on K. Then
there exists an element u ∈ K such that ⟨T u, v − u⟩ ≥ 0 whenever v ∈ K.

Proof. See Corollary III.1.8 in [13]. □

For more information on the theory of monotone operators see [21].

3. Main result. Let X = Lp(Ω, ω1)× Lp(Ω, ω2;Rn). The norm of X is

∥(g, f)∥X = ∥g∥Lp(Ω,ω1) + ∥f∥Lp(Ω,ω2;Rn),

for each element (g, f) ∈ X (f = (f1, . . . , fn)). Then X is a reflexive Banach
space and its dual X∗ = Lp

′
(Ω, ω1)× Lp

′
(Ω, ω2;Rn). Let ⟨· , ·⟩ be the usual

pairing between X and X∗:

⟨(g1, f), (g2, h)⟩ =
∫
Ω
g1g2ω1 dx+

∫
Ω
f · hω2 dx,

(where f = (f1, . . . , fn) and h = (h1, . . . , hn)).
Let ψ ∈W 1,p(Ω, ω1, ω2). Define the set

Kψ = {(g,∇g) : g ∈W 1,p(Ω, ω1, ω2) and g − ψ ∈W 1,p
0 (Ω, ω1, ω2)}.

Lemma 3.1. Kψ is a nonempty closed convex subset of X.

Proof. (a) Suppose that (u,∇u) ∈ Kψ. Hence u ∈ W 1,p(Ω, ω1, ω2). Then
u ∈ Lp(Ω, ω1) and ∇u ∈ Lp(Ω, ω2;Rn). Therefore, (u,∇u) ∈ X. Thus,
Kψ ⊂ X.
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(b) If (uk,∇uk) ∈ Kψ is a sequence which converges to (g, f) ∈ X (uk →
g in Lp(Ω, ω1) and ∇uk → f in Lp(Ω, ω2), where f = (f1, . . . , fn) ∈
Lp(Ω, ω2;Rn)), then (since ω2 ≤ ω1)

(i)

∫
Ω
|uk − g|pω2 dx =

∫
Ω
|(uk − ψ)− (g − ψ)|pω2 dx

≤
∫
Ω
|(uk − ψ)− (g − ψ)|p ω1 dx =

∫
Ω
|uk − g|p ω1 dx→ 0,

(ii)

∫
Ω
|(∇uk −∇ψ)− (f −∇ψ)|p ω2 dx =

∫
Ω
|∇uk − f |p ω2 dx→ 0,

as k → ∞. Since ω2 ∈ Ap, then ∇g = f ∈ Lp(Ω, ω2,Rn) (by the unique-
ness of the gradient). And since uk − ψ ∈ W 1,p

0 (Ω, ω1, ω2), then g − ψ ∈
W 1,p

0 (Ω, ω1, ω2). Hence g ∈ W 1,p(Ω, ω1, ω2). Therefore, (g, f) = (g,∇g) ∈
Kψ. Thus, Kψ is closed in X.
(c) Let (u,∇u), (v,∇v) ∈ Kψ and α ∈ [0, 1]. Then αu + (1 − α)v ∈
W 1,p(Ω, ω1, ω2) and

αu+ (1− α)v − ψ = α(u− ψ) + (1− α)(v − ψ) ∈W 1,p
0 (Ω, ω1, ω2).

Hence α(u,∇u)+ (1−α)(v,∇v) =
(
αu+(1−α)v,∇(αu+(1−α)v)

)
∈ Kψ.

Therefore, Kψ is convex in X. □

Now, define a mapping T : Kψ → X∗ by the formula

(3.1)
T (u,∇u) =

(
H(x, u,∇u) ν2

ω1
+ |u|p−2u− ρ0

ω1
,

A(x,∇u) + B(x,∇u) ν1
ω2

− ρ

ω2

)
,

where ρ = (ρ1, . . . , ρn). For convenience, we denote T (u,∇u) simply by
T (u). For each element (g, f) ∈ X, we have

⟨T (u), (g, f)⟩ =
∫
Ω

(
H(x, u,∇u) ν2

ω1
+ |u|p−2u− ρ0

ω1

)
g ω1 dx

+

∫
Ω

(
A(x,∇u) + B(u,∇u) ν1

ω2
− ρ

ω2

)
·f ω2 dx

=

∫
Ω
H(x, u,∇u) g ν2 dx+

∫
Ω
|u|p−2u g ω1 dx−

∫
Ω
ρ0 g dx

+

∫
Ω
A(x,∇u) ·f ω2 dx+

∫
Ω
B(x,∇u) ·f ν1 dx−

∫
Ω
ρ ·f dx.
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(i) By assumption (H4) we have

(3.2)

∣∣∣∣ ∫
Ω
A(x,∇u)·f ω2 dx

∣∣∣∣ ≤ ∫
Ω
|A(u,∇u)| |f |ω2 dx

≤
∫
Ω
h1|∇u|p−1|f |ω2 dx

≤ ∥h1∥L∞(Ω)∥∇u∥
p−1
Lp(Ω,ω2)

∥f∥Lp(Ω,ω2)

≤ ∥h1∥L∞(Ω)∥(u,∇u)∥
p−1
X ∥(g, f)∥X .

(ii) By assumption (H8) and Remark 2.2(i) we obtain

(3.3)

∣∣∣∣ ∫
Ω
B(x,∇u)·f ν1 dx

∣∣∣∣ ≤ ∫
Ω
|B(x,∇u)| |f | ν1 dx

≤
∫
Ω
h2|∇u|q−1|f | ν1 dx

≤ ∥h2∥L∞(Ω)

(∫
Ω
|∇u|(q−1)q′ν1 dx

)1/q′(∫
Ω
|f |ν1 dx

)1/q

= ∥h2∥L∞(Ω)∥∇u∥
q−1
Lq(Ω,ν1)

∥f∥Lq(Ω,ν1)

≤ ∥h2∥L∞(Ω)C
q−1
1,2 ∥∇u∥q−1

Lp(Ω,ω2)
C1,2∥f∥Lp(Ω,ω2)

≤ Cq1,2∥h2∥L∞(Ω)∥(u,∇u)∥
q−1
X ∥(g, f)∥X .

(iii) By (H12) and Remark 2.2(ii) we get

(3.4)

∣∣∣∣ ∫
Ω
H(x, u,∇u)gν2 dx

∣∣∣∣ ≤ ∫
Ω
|H(x, u,∇u)| |g| ν2 dx

≤
∫
Ω

(
h3|u|s−1 + h4|∇u|s−1

)
|g| ν2 dx

≤ ∥h3∥L∞(Ω)∥u∥
s−1
Ls(Ω,ν2)

∥g∥Ls(Ω,ν2)

+ ∥h4∥L∞(Ω)∥∇u∥
s−1
Ls(Ω,ν2)

∥g∥Ls(Ω,ν2)

≤ ∥h3∥L∞(Ω)C
s−1
2,1 ∥u∥s−1

Lp(Ω,ω1)
C2,1∥g∥Lp(Ω,ω1)

+ ∥h4∥L∞(Ω)C
s−1
2,2 ∥∇u∥s−1

Lp(Ω,ω2)
C2,1∥g∥Lp(Ω,ω1)

≤ C ∥(u,∇u)∥s−1
X ∥(g, f)∥X ,

where C = max{Cs2,1∥h3∥L∞(Ω), C2,1C
s−1
2,2 ∥h4∥L∞(Ω)}.
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(iv) We also have

(3.5)

∣∣∣∣ ∫
Ω
|u|p−2u g ω1 dx

∣∣∣∣ ≤ ∫
Ω
|u|p−1|g|ω1 dx ≤ ∥u∥p−1

Lp(Ω,ω1)
∥g∥Lp(Ω,ω1)

≤ ∥(u,∇u)∥p−1
X ∥(g, f)∥X .

(v) Moreover,

(3.6)

∣∣∣∣ ∫
Ω
ρ0 g dx+

∫
Ω
ρ ·f dx

∣∣∣∣
≤

∫
Ω

|ρ0|
ω1

g ω1 dx+

∫
Ω

|ρ|
ω2

|f |ω2 dx

≤ ∥ρ0/ω1∥Lp′ (Ω,ω1)
∥g∥Lp(Ω,ω1)

+ ∥ρ/ω2∥Lp′ (Ω,ω2)
∥f∥Lp(Ω,ω2)

≤
(
∥ρ0/ω1∥Lp′ (Ω,ω1)

+ ∥ρ/ω2∥Lp′ (Ω,ω2)

)
∥(g, f)∥X .

Therefore, by (i), (ii), (iii), (iv) and (v), T (u) ∈ X∗ for each (u,∇u) ∈ Kψ

and the mapping T is well defined.

Lemma 3.2. The mapping T defined in (3.1) is monotone and coercive.

Proof. (I) If (u,∇u), (f,∇f) ∈ Kψ, then

(3.7)

T (u)− T (f)

=

(
H(x, u,∇u) ν2

ω1
+ |u|p−2u− ρ0

ω1
,A(x,∇u) + B(x,∇u) ν1

ω2
− ρ

ω2

)
−
(
H(x, f,∇f) ν2

ω1
+ |f |p−2f − ρ0

ω1
,A(x,∇f) + B(x,∇f) ν1

ω2
− ρ

ω2

)
=

(
H(x, u,∇u) ν2

ω1
−H(x, f,∇f) ν2

ω1
+ |u|p−2u− |f |p−2f,

A(x,∇u)−A(x,∇f) + B(x,∇u) ν1
ω2

− B(x,∇f) ν1
ω2

)
.

Then by assumptions (H2), (H6) and (H10) we have

⟨T (u)− T (f), (u,∇u)− (f,∇f)⟩

=

∫
Ω

(
H(x, u,∇u)−H(x, f,∇f)

)
(u− f) ν2 dx

+

∫
Ω

(
|u|p−2u− |f |p−2f

)
(u− f)ω1 dx

+

∫
Ω

(
A(x,∇u)−A(x,∇f)

)
·∇(u− f)ω2 dx

+

∫
Ω

(
B(x,∇u)− B(x,∇f)

)
·(∇u−∇f) ν1 dx > 0,
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since, by Proposition 2.3,

(|u|p−2u− |f |p−2f)(u− f) ≥ βp(|u|+ |f |)p−2|u− f | > 0

(if u ̸= f). Hence, T is monotone.
(II) Let (f,∇f) ∈ Kψ be fixed. For each (u,∇u) ∈ Kψ, by assumptions
(H6) and (H10), we have

(3.8)

⟨T (u)− T (f), (u,∇u)− (f,∇f)⟩

=

∫
Ω

(
H(x, u,∇u)−H(x, f,∇f)

)
(u− f) ν2 dx

+

∫
Ω

(
|u|p−2u− |f |p−2f

)
(u− f)ω1 dx

+

∫
Ω

(
A(x,∇u)−A(x,∇f)

)
·∇(u− f)ω2 dx

+

∫
Ω

(
B(x,∇u)− B(x,∇f)

)
·(∇u−∇f) ν1 dx

>

∫
Ω

(
|u|p−2u− |f |p−2f

)
(u− f)ω1 dx

+

∫
Ω

(
A(x,∇u)−A(x,∇f)

)
·∇(u− f)ω2 dx.

By (H3) and (3.2), we obtain

(3.9)

∫
Ω

(
A(x,∇u)−A(x,∇f)

)
·∇(u− f)ω2 dx

=

∫
Ω
A(x,∇u) ·∇uω2 dx+

∫
Ω
A(x,∇f) ·∇f ω2 dx

−
∫
Ω
A(x,∇u) ·∇f ω2 dx−

∫
Ω
A(x,∇f) ·∇uω2 dx

≥ λ1

∫
Ω
|∇u|pω2 dx+ λ1

∫
Ω
|∇f |pω2 dx

−
∫
Ω
A(x,∇u) ·∇f ω2 dx−

∫
Ω
A(x,∇f) ·∇uω2 dx

≥ λ1

∫
Ω
|∇u|pω2 dx+ λ1

∫
Ω
|∇f |pω2 dx

− ∥h1∥L∞(Ω)∥∇u∥
p−1
Lp(Ω,ω2)

∥∇f∥Lp(Ω,ω2)

− ∥h1∥L∞(Ω)∥∇f∥
p−1
Lp(Ω,ω2)

∥∇u∥Lp(Ω,ω2)
.
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Moreover, by (3.5) we have

(3.10)

∫
Ω

(
|u|p−2u− |f |p−2f

)
(u− f)ω1 dx

=

∫
Ω
|u|pω1 dx+

∫
Ω
|f |p ω1 dx

−
∫
Ω
|u|p−2u f ω1 dx−

∫
Ω
|f |p−2f uω1 dx

≥
∫
Ω
|u|pω1 dx+

∫
Ω
|f |pω1 dx

− ∥u∥p−1
Lp(Ω,ω1)

∥f∥Lp(Ω,ω1)
− ∥f∥p−1

Lp(Ω,ω1)
∥u∥Lp(Ω,ω1)

.

Hence, by (3.8), (3.9) and (3.10) we obtain

(3.11)

⟨T (u)− T (f), (u,∇u)− (f,∇f)⟩

≥ C1

(
∥u∥pLp(Ω,ω1)

+ ∥∇u∥pLp(Ω,ω2)
+ ∥f∥pLp(Ω,ω1)

+ ∥∇f∥Lp(Ω,ω2)

)
− C2

(
∥∇u∥p−1

Lp(Ω,ω2)
∥∇f∥Lp(Ω,ω2)

+ ∥∇f∥p−1
Lp(Ω,ω2)

∥∇u∥Lp(Ω,ω2)

+ ∥u∥p−1
Lp(Ω,ω1)

∥f∥Lp(Ω,ω1)
+ ∥f∥p−1

Lp(Ω,ω1)
∥u∥Lp(Ω,ω1)

)
,

where C1 = min{1, λ1} and C2 = max{1, ∥h1∥L∞(Ω)}. To estimate the
right-hand side of (3.11) from below, we use the inequality

(∑4
j=1 cj

)q ≤
4q

∑4
j=1 c

q
j for all cj ≥ 0 (j = 1, 2, 3, 4) and q > 0. We have

(a) (∥(u,∇u)∥X + ∥(f,∇f)∥X)
p

= (∥u∥Lp(Ω,ω1)
+ ∥∇u∥Lp(Ω,ω2)

+ ∥f∥Lp(Ω,ω1)
+ ∥∇f∥Lp(Ω,ω2)

)p

≤ 4p
(
∥u∥pLp(Ω,ω1)

+ ∥∇u∥pLp(Ω,ω1)
+ ∥f∥pLp(Ω,ω1)

+ ∥∇f∥pLp(Ω,ω2)

)
;

(b) ∥∇u∥p−1
Lp(Ω,ω2)

∥∇f∥Lp(Ω,ω2)
+ ∥u∥p−1

Lp(Ω,ω1)
∥f∥Lp(Ω,ω1)

≤ ∥(u,∇u)∥p−1
X ∥(f,∇f)∥X

≤ (∥(u,∇u)∥X + ∥(f,∇f)∥X)
p−1∥(f,∇f)∥X ;

(c) ∥∇u∥Lp(Ω,ω2)
∥∇f∥p−1

Lp(Ω,ω2)
+ ∥u∥Lp(Ω,ω1)

∥f∥p−1
Lp(Ω,ω1)

≤ ∥(u,∇u)∥X∥(f,∇f)∥
p−1
X

≤ (∥(u,∇u)∥X + ∥(f,∇f)∥X)∥(f,∇f)∥
p−1
X .
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Now using (a), (b) and (c), from (3.11) we obtain

⟨T (u)− T (f), (u,∇u)− (f,∇f)⟩

≥ 1

4p
C1(∥(u,∇u)∥X + ∥(f,∇f)∥X)

p

− C2(∥(u,∇u)∥X + ∥(f,∇f)∥X)
p−1∥(f,∇f)∥X

− C2(∥(u,∇u)∥X + ∥(f,∇f)∥X) ∥(f,∇f)∥
p−1
X .

Thus,

(3.12)

⟨T (u)− T (f), (u,∇u)− (f,∇f)⟩
∥(u,∇u)− (f,∇f)∥X

≥ ⟨T (u)− T (f), (u,∇u)− (f,∇f)⟩
∥(u,∇u)∥X + ∥(f,∇f)∥X

≥ 1

4p
C1(∥(u,∇u)∥X + ∥(f,∇f)∥X)

p−1

− C2(∥(u,∇u)∥X + ∥(f,∇f)∥X)
p−2∥(f,∇f)∥X

− C2∥(f,∇f)∥p−1
X .

For each sequence (uk,∇uk) ∈ Kψ with ∥(uk,∇uk)∥X → ∞, we have
∥(uk,∇uk)∥X + ∥(f,∇f)∥X ≥ ∥(uk,∇uk)∥X → ∞.

It follows that

(3.13)

1

4p
C1

(
∥(uk,∇uk)∥X + ∥(f,∇f)∥X

)p−1

− C2

(
∥(uk,∇uk)∥X + ∥(f,∇f)∥X

)p−2∥(f,∇f)∥X

=

(
1

4p
C1 − C2

∥(f,∇f)∥X
∥(uk,∇uk)∥X + ∥(f,∇f)∥X

)
×
(
∥(uk,∇uk)∥X + ∥(f,∇f)∥X

)p−1 → ∞, as k → 0.

Combining (3.12) and (3.13), we obtain

⟨T (uk)− T (f), (uk,∇uk)− (f,∇f)⟩
∥(uk,∇uk)− (f,∇f)∥X

→ ∞, as k → ∞.

Therefore, T is coercive in Kψ. □

Lemma 3.3. The mapping T defined in (3.1) is weakly continuous.

Proof. If (u,∇u), (f,∇f) ∈ Kψ, then

⟨T (u)−T (f),(f,∇f)⟩

=

∫
Ω

(
B(x,∇u)−B(x,∇f)

)
·∇f ν1 dx+

∫
Ω

(
A(x,∇u)−A(x,∇f)

)
·∇f ω2 dx

+

∫
Ω

(
H(x,u,∇u)−H(x,f,∇f)

)
f ν2 dx+

∫
Ω

(
|u|p−2u−|f |p−2f

)
f ω1 dx.



Degenerate nonlinear elliptic equations 29

The mapping T is weakly continuous on Kψ if T (um) converges to T (u)
weakly in X∗, i.e., ⟨T (um),(f,∇f)⟩→ ⟨T (u),(f,∇f)⟩ whenever (um,∇um),
(u,∇u)∈Kψ, (um,∇um)→ (u,∇u) in X. It suffices to prove that ⟨T (um)−
T (u),(f,∇f)⟩→ 0, for (f,∇f)∈X.
(a) We define the operators Gj :Kψ →Lq

′
(Ω,ν1) (for j = 1,2, . . . ,n) by the

formula
(Gju)(x) =Bj(x,∇u).

We now show that the operator Gj is bounded and continuous.
(i) By (H8) and Remark 2.2(i) we have

∥Gju∥q
′

Lq′ (Ων1)
=

∫
Ω
|Gju(x)|q

′
ν1 dx

=

∫
Ω
|Bj(x,∇u)|q

′
ν1 dx

≤
∫
Ω

(
h2|∇u|q/q

′
)q′

ν1 dx

≤ ∥h2∥q
′

L∞(Ω)

∫
Ω
|∇u|q ν1 dx

≤Cq1,2∥h2∥
q′

L∞(Ω)

(∫
Ω
|∇u|pω2 dx

)q/p
=Cq1,2∥h2∥

q′

L∞(Ω)∥∇u∥
q
Lp(Ω,ω2)

≤Cq1,2∥h2∥
q′

L∞(Ω)∥(u,∇u)∥
q
X .

Hence, Gj is bounded.
(ii) If (um,∇um)→ (u,∇u)∈Kψ, then ∇um→∇u in Lp(Ω,ω2). By The-
orem 2.1 there exists a subsequence {umk

} and functions Φ1 ∈Lp(Ω,ω1),
Φ2 ∈Lp(Ω,ω2) such that

(3.14)

umk
(x)→ u(x) a.e. in Ω;

|umk
(x| ≤Φ1(x) a.e. in Ω;

Djumk
→Dju(x) a.e. in Ω;

|∇umk
(x)| ≤Φ2(x) a.e. in Ω.

Next, applying (H8), we obtain

|Gjumk
−Gju|q

′
ν1 = |Bj(x,∇umk

)−Bj(x,∇u)|q
′
ν1

≤Cq
(
|Bj(x,∇umk

)|q
′
+ |Bj(x,∇u)|q

′)
ν1 dx

≤Cq
[
(h2|∇umk

|q−1)q
′
+(h2|∇u|q−1)q

′]
ν1

≤ 2Cq∥h2∥q
′

L∞(Ω)Φ
q
2 ν1 ∈L

1(Ω),
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where Cq depends only on q and by Remark 2.2(i),∫
Ω
Φq2ν1 dx≤Cq1,2

(∫
Ω
Φp2ω2 dx

)q/p
.

By condition (H5), we have Gjumk
(x)=Bj(x,∇umk

)→Bj(x,∇u)=Gju(x),
as mk→∞. Therefore, by the Lebesgue Dominated Convergence Theorem,
we obtain

∥Gjumk
−Gju∥Lq′ (Ω,ν1)

→ 0,

that is, Gumk
→Gu in Lq

′
(Ω,ν1). From the Convergence Principle in Banach

spaces (see Proposition 10.13 in [20]) we conclude that

(3.15) Gjum→Gju in Lq
′
(Ω,ν1).

(b) We define the operators Fj :Kψ →Lp
′
(Ω,ω2) (j =1,2, . . . ,n) by the for-

mula
(Fju)(x) =Aj(x,∇u).

We show that this operator is bounded and continuous.
(i) Using (H4), we obtain

∥Fju∥p
′

Lp′ (Ωω2)
=

∫
Ω
|Fju(x)|p

′
ω2 dx

=

∫
Ω
|Aj(x,∇u)|p

′
ω2 dx

≤
∫
Ω

(
h1|∇u|p/p

′
)p′

ω2 dx

≤ ∥h1∥p
′

L∞(Ω)

∫
Ω
|∇u|pω2 dx

= ∥h1∥p
′

L∞(Ω)∥∇u∥
p
Lp(Ω,ω2)

≤ ∥h1∥p
′

L∞(Ω)∥(u,∇u)∥
p
X .

Hence, Fj is bounded.
(ii) If (um,∇um)→ (u,∇u)∈Kψ, then ∇um→∇u in Lp(Ω,ω2). By (3.14)
and (H4) we obtain

|Fjumk
−Fju|p

′
ω2 = |Aj(x,∇uk)−Aj(x,∇u)|p

′
ω2

≤Cp

(
|Aj(x,∇umk

)|p
′
+ |Aj(x,∇u)|p

′
)
ω2

≤Cp

(
hp

′

1 |∇umk
|p+hp

′

1 |∇u|
p

)
ω2

≤ 2Cp∥h1∥p
′

L∞(Ω)Φ
p
2ω2 ∈L1(Ω),

where Cp depends only on p.
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By condition (H1) we have Fjumk
(x)=Aj(x,∇umk

)→Aj(x,∇u)=Fju(x),
as mk→∞. Therefore, by the Lebesgue Dominated Convergence Theorem,
we obtain

∥Fjumk
−Fju∥Lp′ (Ω,ω2)

→ 0,

that is, Fjumk
→ Fju in Lp

′
(Ω,ω2). From the Convergence Principle in

Banach spaces (see Proposition 10.13 in [20]) we conclude that

(3.16) Fjum→ Fju in Lp
′
(Ω,ω2).

(c) We define the operator H :Kψ →Ls
′
(Ω,ν2) by the formula

(Hu)(x) =H(x,u,∇u).

(i) Using (H12) and Remark 2.2(i), we have

∥Hu∥s
′

Ls′ (Ω,ν2)
=

∫
Ω
|Hu|s

′
ν2 dx=

∫
Ω
|H(x,u,∇u)|s

′
ν2 dx

≤
∫
Ω

(
h3|u|s/s

′
+h4|∇u|s/s

′
)s′

ν2 dx

≤Cs

∫
Ω

(
hs

′
3 |u|

s+hs
′
4 |∇u|

s

)
ν2 dx

≤Cs

(
∥h3∥s

′

L∞(Ω)

∫
Ω
|u|sν2 dx+∥h4∥L∞(Ω)

∫
Ω
|∇u|sν2 dx

)
≤Cs

[
∥h3∥s

′

L∞(Ω)C
s
2,1

(∫
Ω
|u|pω1 dx

)s/p
+∥h4∥s

′

L∞(Ω)C
s
2,2

(∫
Ω
|∇u|pω2 dx

)s/p]
≤CsC

[(∫
Ω
|u|pω1 dx

)s/p
+

(∫
Ω
|∇u|pω2 dx

)s/p]
≤CsC ∥(u,∇u)∥sX ,

where C =max{Cs2,1∥h3∥
s′

L∞(Ω,C
s
2,2∥h4∥

s′

L∞(Ω)}.
(ii) If (um,∇um)→ (u,∇u)∈Kψ, analogously to what was demonstrated
with the operators G, Fj and by (3.14),

|H(umk
)−H(u)|s

′
ν2 = |H(x,umk

,∇umk
)−H(x,u,∇u)|s

′
ν2

≤Cs

(
|H(x,umk

,∇umk
)|s

′
+ |H(x,u,∇u)|s

′
)
ν2
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≤Cs

[(
h3|umk

|s/s
′
+h4|∇umk

|s/s
′
)s′

+

(
h3|u|s/s

′
+h4|∇u|s/s

′
)s′]

ν2

≤Cs

[(
∥h3∥s

′

L∞(Ω)|umk
|s+∥h4∥L∞(Ω)|∇umk

|s
)

+

(
∥h3∥s

′

L∞(Ω)|u|
s+∥h4∥s

′

L∞(Ω)|∇u|
s

)]
ν2

≤ 2Cs(∥h3∥s
′

L∞(Ω)Φ
s
1+∥h4∥s

′

L∞(Ω)Φ
s
2)ν2 ∈L1(Ω),

since, by Remark 2.2(ii),∫
Ω
Φs1ν2 dx≤Cs2,1

(∫
Ω
Φp1ω1 dx

)s/p
and

∫
Ω
Φs2ν2 dx≤Cs2,2

(∫
Ω
Φp2ωdx

)s/p
.

By condition (H9) we have Humk
(x) =H(x,umk

,∇umk
)→H(x,u,∇u) =

Hu(x), as mk →∞. Therefore, by the Lebesgue Dominated Convergence
Theorem, we obtain

∥Humk
−Hu∥Ls′ (Ω,ν2)

→ 0,

that is, Humk
→Hu in Ls

′
(Ω,ν2). From the Convergence Principle in Ba-

nach spaces (see Proposition 10.13 in [20]) we conclude that

(3.17) Hum→Hu in Ls
′
(Ω,ν2).

(d) We define the operator J :Kψ →Lp
′
(Ω,ω1) by the formula

(Ju)(x) = |u(x)|p−2u(x).

(i) If (u,∇u)∈Kψ, then

∥Ju∥p
′

Lp′ (Ω,ω1)
=

∫
Ω
|Ju(x)|p

′
ω1 dx

=

∫
Ω
|u|(p−1)p′ω1 dx

=

∫
Ω
|u|pω1 dx

≤ ∥(u,∇u)∥pX .

(ii) If (um,∇um)→ (u,∇u)∈Kψ, analogously to what was demonstrated
with the operators G, Fj , H and by (3.14), we obtain

(3.18) Jum→ Ju in Lp
′
(Ω,ω1).
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Therefore, if (um,∇um)→ (u,∇u) in Kψ, by Remark 2.2(i), (ii) we have

|⟨T (um)−T (u),(f,∇f)⟩|

=

∣∣∣∣ n∑
j=1

∫
Ω

(
Bj(x,∇um)−Bj(x,∇u)

)
Djf ν1 dx

+
n∑
j=1

∫
Ω

(
Aj(x,∇um)−Aj(x,∇u)

)
Djf ω2 dx

+

∫
Ω

(
H(x,um,∇um)−H(x,u,∇u)

)
f ν2 dx

+

∫
Ω
(|um|p−2um−|u|p−2u)f ω1 dx

∣∣∣∣
≤

n∑
j=1

∫
Ω
|Gjum−Gju||Djf |ν1 dx+

n∑
j=1

∫
Ω
|Fjum−Fju| |Djf |ω2 dx

+

∫
Ω
|Hum−Hu||f |ν2 dx+

∫
Ω
|Jum−Ju||f |ω1 dx

≤
n∑
j=1

∥Gjum−Gju∥Lq ′ (Ω,ν1)
∥Djf∥Lq(Ω,ν1)

+

n∑
j=1

∥Fjum−Fju∥Lp ′ (Ω,ω2)
∥Djf∥Lp(Ω,ω2)

+∥Hum−Hu∥Ls ′ (Ω,ν2)
∥f∥Ls(Ω,ν2)

+∥Jum−Ju∥Lp ′ (Ω,ω1)
∥f∥Lp(Ω,ω1)

≤C1,2

( n∑
j=1

∥Gjum−Gju∥Lq ′ (Ω,ν1)

)
∥∇f∥Lp(Ω,ω2)

+

( n∑
j=1

∥Fjum−Fju∥Lp ′ (Ω,ω2)

)
∥∇f∥Lp(Ω,ω2)

+C2,1∥Hum−Hu∥Ls ′ (Ω,ν2)
∥f∥Lp(Ω,ω1)

+∥Jum−Ju∥Lp ′ (Ω,ω1)
∥f∥Lp(Ω,ω1)

≤
(
C1.2

n∑
j=1

∥Gjum−Gju∥Lq ′ (Ω,ν1)
+

n∑
j=1

∥Fjum−Fju∥Lp ′ (Ω,ω2)

+C2,1∥Hum−Hu∥Ls ′ (Ω,ν2)
+∥Jum−Ju∥Lp ′ (Ω,ω1)

)
∥(f,∇f)∥X .

Hence, using (3.15), (3.16), (3.17) and (3.18), we have

⟨T (um)−T (u),(f,∇f)⟩→ 0

as m→∞, that is, T is weakly continuous. □
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4. Proof of Theorem 1.1.
Existence of solution. Based on Lemma 3.1, Lemma 3.2 and Lemma 3.3,
by Theorem 2.4 there exits an element (u,∇u) ∈ Kψ such that

⟨T (u), (f,∇f)− (u,∇u)⟩ ≥ 0

whenever (f,∇f) ∈ Kψ. For each φ ∈ W 1,p
0 (Ω, ω1, ω2), we have u + φ − ψ

= (u − ψ) + φ ∈ W 1,p
0 (Ω, ω1, ω2). Therefore, (u + φ,∇u + ∇φ) ∈ Kψ and

(u− φ,∇u−∇φ) ∈ Kψ. Then

⟨T (u), (φ,∇φ)⟩ = ⟨T (u), (u+ φ,∇u+∇φ)− (u,∇u)⟩ ≥ 0

and

⟨T (u), (φ,∇φ)⟩ = −⟨T (u), (u− φ,∇u−∇φ)− (u,∇u)⟩ ≤ 0.

Therefore, ⟨T (u), (φ,∇φ)⟩ = 0, that is,∫
Ω
B(x,∇u)·∇φν1 dx+

∫
Ω
A(x,∇u)·∇φω2 dx

+

∫
Ω
H(x, u,∇u)φν2 dx+

∫
Ω
|u|p−2uφω1 dx

=

∫
Ω
ρ0 φdx+

n∑
j=1

∫
Ω
ρjDjφdx,

for all φ ∈W 1,p
0 (Ω, ω1, ω2), that is, u is a solution to problem (P ).

Uniqueness. For the uniqueness, let u1 and u2 be two solutions to prob-
lem (P ), with ui − ψ ∈ W 1,p

0 (Ω, ω1, ω2) (i = 1, 2). Since ψ, u1, u2 ∈
W 1,p(Ω, ω1, ω2) and u1 − u2 = (u1 − ψ)− (u2 − ψ)∈W 1,p

0 (Ω, ω1, ω2), then∫
Ω
B(x,∇u1) ·∇(u1 − u2) ν1 dx+

∫
Ω
A(x,∇u1) ·∇(u1 − u2)ω2 dx

+

∫
Ω
H(x, u1,∇u1))(u1 − u2) ν2 dx+

∫
Ω
|u1|p−2u1(u1 − u2)ω1 dx

=

∫
Ω
ρ0(u1 − u2) dx+

∫
Ω
ρ ·∇(u1 − u2) dx,

and ∫
Ω
B(x,∇u2)·∇(u1 − u2) ν1 dx+

∫
Ω
A(x,∇u2)·∇(u1 − u2)ω2 dx

+

∫
Ω
H(x, u2,∇u2)(u1 − u2) ν2 dx+

∫
Ω
|u2|p−2u2 (u1 − u2)ω1 dx

=

∫
Ω
ρ0(u1 − u2) dx+

∫
Ω
ρ ·∇(u1 − u2) dx.
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Hence, ∫
Ω

(
B(x,∇u1)− B(x,∇u2)

)
·∇(u1 − u2) ν1 dx

+

∫
Ω

(
A(x,∇u1)−A(x,∇u2)

)
·∇(u1 − u2)ω2 dx

+

∫
Ω
(H(x, u1,∇u1)−H(x, u2,∇u2))(u1 − u2) ν2 dx

+

∫
Ω
(|u1|p−2u1 − |u2|p−2u2)(u1 − u2)ω1 dx = 0,

and by (H2), (H6), (H10) and Proposition 2.3 we have∫
Ω

(
B(x,∇u1)− B(x,∇u2)

)
·∇(u1 − u2) ν1 dx = 0∫

Ω

(
A(x,∇u1)−A(x,∇u2)

)
·∇(u1 − u2)ω2 dx = 0,∫

Ω

(
H(x, u1,∇u1)−H(x, u2,∇u2)

)
(u1 − u2) ν2 dx = 0,∫

Ω
(|u1|p−2u1 − |u2|p−2u2)(u1 − u2)ω1 dx = 0.

Thus,∫
{∇u1 ̸=∇u2}

(
A(x,∇u1)−A(x,∇u2)

)
·∇(u1 − u2)ω2 dx dx = 0.

By (H2) and ω2 ∈ Ap, we obtain |{∇u1 ̸= ∇u2}| = 0 and ∇u1 = ∇u2 a.e.
in Ω. Since u1 − u2 ∈W 1,p

0 (Ω, ω1, ω2), we conclude that u1 = u2 a.e. in Ω.
Theorem 1.1 is thereby proved.

Example 4.1. Let Ω = {(x, y) ∈ R2 : x2 + y2 < 1}. For (x, y) ∈ R2,
ξ = (ξ1, ξ2) ∈ R2, η ∈ R, p = 4 and q = s = 3, consider the functions

A((x, y), ξ) = ξ|ξ|2
(
cos(x/(x2 + y2)) + 2

)
B((x, y), ξ) = ξ|ξ|

(
sin(y/(x2 + y2)) + 2

)
,

H((x, y), η, ξ) = η|η|(1 + cos2(xy))

ω1(x, y) = (x2 + y2)−1/2 and ω2(x, y) = (x2 + y2)1/2

ν1(x, y) = (x2 + y2)2 and ν2(x, y) = (x2 + y2)−1/8,

ρ0(x, y) =
cos(xy)

(x2 + y2)
and ρ(x, y) =

(
cos(xy)

x2 + y2
,
sin(xy)

x2 + y2

)
,

and ψ(x, y) = sin(x+ y).

Therefore, by Theorem 1.1, the problem (P ) has a unique solution u ∈
W 1,4(Ω, ω1, ω2).
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